-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdithering.go
156 lines (132 loc) · 4.77 KB
/
dithering.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
// Package dithering provides a customizable image ditherer
package dithering
import (
"image"
"image/color"
"image/draw"
)
var (
// FloydSteinberg is the Floyd Steinberg matrix
FloydSteinberg = [][]float32{{0, 0, 7.0 / 16.0}, {3.0 / 16.0, 5.0 / 16.0, 1.0 / 16.0}}
// JarvisJudiceNinke is the JarvisJudiceNinke matrix
JarvisJudiceNinke = [][]float32{{0, 0, 0, 7.0 / 48.0, 5.0 / 48.0}, {3.0 / 48.0, 5.0 / 48.0, 7.0 / 48.0, 5.0 / 48.0, 3.0 / 48.0}, {1.0 / 48.0, 3.0 / 48.0, 5.0 / 48.0, 3.0 / 48.0, 1.0 / 48.0}}
// Stucki is the Stucki matrix
Stucki = [][]float32{{0, 0, 0, 8.0 / 42.0, 4.0 / 42.0}, {2.0 / 42.0, 4.0 / 42.0, 8.0 / 42.0, 4.0 / 42.0, 2.0 / 42.0}, {1.0 / 42.0, 2.0 / 42.0, 4.0 / 42.0, 2.0 / 42.0, 1.0 / 42.0}}
// Atkinson is the Atkinson matrix
Atkinson = [][]float32{{0, 0, 1.0 / 8.0, 1.0 / 8.0}, {1.0 / 8.0, 1.0 / 8.0, 1.0 / 8.0, 0}, {0, 1.0 / 8.0, 0, 0}}
// Burkes is the Burkes matrix
Burkes = [][]float32{{0, 0, 0, 8.0 / 32.0, 4.0 / 32.0}, {2.0 / 32.0, 4.0 / 32.0, 8.0 / 32.0, 4.0 / 32.0, 2.0 / 32.0}}
// Sierra is the Sierra matrix
Sierra = [][]float32{{0, 0, 0, 5.0 / 32.0, 3.0 / 32.0}, {2.0 / 32.0, 4.0 / 32.0, 5.0 / 32.0, 4.0 / 32.0, 2.0 / 32.0}, {0, 2.0 / 32.0, 3.0 / 32.0, 2.0 / 32.0, 0}}
// TwoRowSierra is a variant of the Sierrra matrix
TwoRowSierra = [][]float32{{0, 0, 0, 4.0 / 16.0, 3.0 / 16.0}, {1.0 / 32.0, 2.0 / 32.0, 3.0 / 32.0, 2.0 / 32.0, 1.0 / 32.0}}
// SierraLite is a variant of the Sierra matrix
SierraLite = [][]float32{{0, 0, 2.0 / 4.0}, {1.0 / 4.0, 1.0 / 4.0, 0}}
)
// Dither represent dithering algorithm implementation
type Dither struct {
// Matrix is the error diffusion matrix
Matrix [][]float32
animation chan draw.Image
nbFrames int
}
// NewDither prepares a dithering algorithm
func NewDither(matrix [][]float32) Dither {
return Dither{matrix, make(chan draw.Image), 1}
}
// NewDitherAnimation prepares a dithering algorithm and animation
//
// you can retrieve every generated frames thanks to RetrieveFrame
// Note: frames are shared using an unbuffered channel
func NewDitherAnimation(matrix [][]float32, nbFrames int) Dither {
return Dither{matrix, make(chan draw.Image), nbFrames}
}
// abs gives the absolute value of a signed integer
func abs(x int16) uint16 {
if x < 0 {
return uint16(-x)
}
return uint16(x)
}
// findColor determines the closest color in a palette given the pixel color and the error
//
// It returns the closest color, the updated error and the distance between the error and the color
func findColor(err color.Color, pix color.Color, pal color.Palette) (color.RGBA, PixelError, uint16) {
var errR, errG, errB,
pixR, pixG, pixB,
colR, colG, colB int16
_errR, _errG, _errB, _ := err.RGBA()
_pixR, _pixG, _pixB, _ := pix.RGBA()
// Low-pass filter
errR = int16(float32(int16(_errR)) * 0.75)
errG = int16(float32(int16(_errG)) * 0.75)
errB = int16(float32(int16(_errB)) * 0.75)
pixR = int16(uint8(_pixR)) + errR
pixG = int16(uint8(_pixG)) + errG
pixB = int16(uint8(_pixB)) + errB
var index int
var minDiff uint16 = 1<<16 - 1
for i, col := range pal {
_colR, _colG, _colB, _ := col.RGBA()
colR = int16(uint8(_colR))
colG = int16(uint8(_colG))
colB = int16(uint8(_colB))
var distance = abs(pixR-colR) + abs(pixG-colG) + abs(pixB-colB)
if distance < minDiff {
index = i
minDiff = distance
}
}
_colR, _colG, _colB, _ := pal[index].RGBA()
colR = int16(uint8(_colR))
colG = int16(uint8(_colG))
colB = int16(uint8(_colB))
return color.RGBA{uint8(colR), uint8(colG), uint8(colB), 255},
PixelError{float32(pixR - colR),
float32(pixG - colG),
float32(pixB - colB),
1<<16 - 1},
minDiff
}
func findShift(matrix [][]float32) int {
for _, v1 := range matrix {
for j, v2 := range v1 {
if v2 > 0.0 {
return -j + 1
}
}
}
return 0
}
// Draw applies an error diffusion algorithm to the src image
func (dit Dither) Draw(dst draw.Image, rect image.Rectangle, src image.Image, sp image.Point) {
if _, ok := dst.(*image.Paletted); !ok {
return
}
p := dst.(*image.Paletted).Palette
err := NewErrorImage(rect)
shift := findShift(dit.Matrix)
pixPerFrame := (rect.Dx() * rect.Dy()) / dit.nbFrames
for y := rect.Min.Y; y < rect.Max.Y; y++ {
for x := rect.Min.X; x < rect.Max.X; x++ {
// using the closest color
r, e, _ := findColor(err.PixelErrorAt(x, y), src.At(x, y), p)
dst.Set(x, y, r)
err.SetPixelError(x, y, e)
if (y != 0 && x != 0) && (((y*rect.Dy())+x)%pixPerFrame == 0) {
dit.animation <- dst
}
// diffusing the error using the diffusion matrix
for i, v1 := range dit.Matrix {
for j, v2 := range v1 {
err.SetPixelError(x+j+shift, y+i,
err.PixelErrorAt(x+j+shift, y+i).Add(err.PixelErrorAt(x, y).Mul(v2)))
}
}
}
}
}
// RetrieveFrame returns the next available frame
func (dit Dither) RetrieveFrame() draw.Image {
return <-dit.animation
}