-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmain.py
115 lines (95 loc) · 3.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import importlib
import os
import math
import time
import torch
from omegaconf import OmegaConf
import hydra
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint, LearningRateMonitor
from pytorch_lightning.loggers import TensorBoardLogger, CSVLogger
from src.utils.extra import cprint, find_best_checkpoint
from src.utils.train_utils import get_num_gaussians_from_checkpoint
import torch.multiprocessing
torch.multiprocessing.set_sharing_strategy('file_system')
torch.autograd.set_detect_anomaly(True)
os.environ['SLURM_JOB_NAME'] = 'bash'
torch.set_float32_matmul_precision('medium') # 'high'
@hydra.main(config_path="./config", config_name="OBJ_GAUSSIAN")
def main(config):
cur_path = os.getcwd()
if config.trainer.mode == 'train':
if len(os.listdir(cur_path)) != 0:
os.system("rm -r *")
cprint("------------------------------------------------------", 'red')
cprint(f"Cleaning up the directory.. {cur_path}", 'red')
cprint("------------------------------------------------------", 'red')
if config.trainer.mode == 'train':
save_path = os.path.join(cur_path, "config.yaml")
if os.path.exists(save_path):
time_now = math.ceil(time.time())
save_path = os.path.join(cur_path, f"config_{time_now}.yaml")
OmegaConf.save(config, save_path)
ckpt_dir = os.path.join(cur_path, "checkpoints/")
if config.checkpoint:
if config.checkpoint == "best":
config.checkpoint = find_best_checkpoint(ckpt_dir)
else:
config.checkpoint = os.path.join(ckpt_dir, config.checkpoint)
cprint(f"Loading from the checkpoint: {config.checkpoint}", 'green')
else:
os.makedirs(ckpt_dir, exist_ok=True)
config.checkpoint = None
pl.seed_everything(config.trainer.seed)
train(config, mode=config.trainer.mode, ckpt_dir=ckpt_dir)
def train(config, mode, ckpt_dir):
if mode != 'test':
callbacks = [
ModelCheckpoint(
# monitor="loss",
dirpath=ckpt_dir,
filename="{epoch:03d}-{step}-{loss:.6f}",
save_top_k=-1,
mode="min",
every_n_epochs=1,
verbose=True
),
LearningRateMonitor(logging_interval='step'),
]
loggers = []
if mode != 'test':
if 'csv' in config.trainer.loggers:
loggers.extend([CSVLogger('.', name='logs', version='csv_logs')])
else:
callbacks = []
loggers = []
if mode == 'debug':
trainer = pl.Trainer(fast_dev_run=True)
else:
## DDP Fails for multiple models and optimizers
# strategy = 'ddp'
## DDP_parameter_false works for multiple models and optimizers but slow
# strategy = 'ddp_find_unused_parameters_false'
trainer = pl.Trainer(
devices=config.trainer.gpus,
accelerator='gpu',
callbacks=callbacks,
logger=loggers,
**config.trainer.pl_vars
)
if config.checkpoint is not None:
num_gaussians = get_num_gaussians_from_checkpoint(config.checkpoint)
config.model.opts.num_gaussians = num_gaussians
module = hydra.utils.instantiate(config.module, _recursive_=False)
module = module.load_from_checkpoint(checkpoint_path=config.checkpoint, opts=config.opts,
mode=config.trainer.mode)
else:
module = hydra.utils.instantiate(config.module, _recursive_=False)
if config.trainer.torch_compile_mode is not None:
module = torch.compile(module, mode=config.trainer.torch_compile_mode)
if mode == 'test':
trainer.test(module)
else:
trainer.fit(module)
if __name__ == "__main__":
main()