forked from rust-lang/rust
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcmp.rs
312 lines (283 loc) · 10 KB
/
cmp.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Defines the `Ord` and `Eq` comparison traits.
//!
//! This module defines both `Ord` and `Eq` traits which are used by the
//! compiler to implement comparison operators. Rust programs may implement
//!`Ord` to overload the `<`, `<=`, `>`, and `>=` operators, and may implement
//! `Eq` to overload the `==` and `!=` operators.
//!
//! For example, to define a type with a customized definition for the Eq
//! operators, you could do the following:
//!
//! ```rust
//! // Our type.
//! struct SketchyNum {
//! num : int
//! }
//!
//! // Our implementation of `Eq` to support `==` and `!=`.
//! impl Eq for SketchyNum {
//! // Our custom eq allows numbers which are near each other to be equal! :D
//! fn eq(&self, other: &SketchyNum) -> bool {
//! (self.num - other.num).abs() < 5
//! }
//! }
//!
//! // Now these binary operators will work when applied!
//! assert!(SketchyNum {num: 37} == SketchyNum {num: 34});
//! assert!(SketchyNum {num: 25} != SketchyNum {num: 57});
//! ```
/// Trait for values that can be compared for equality and inequality.
///
/// This trait allows partial equality, where types can be unordered instead of
/// strictly equal or unequal. For example, with the built-in floating-point
/// types `a == b` and `a != b` will both evaluate to false if either `a` or
/// `b` is NaN (cf. IEEE 754-2008 section 5.11).
///
/// Eq only requires the `eq` method to be implemented; `ne` is its negation by
/// default.
///
/// Eventually, this will be implemented by default for types that implement
/// `TotalEq`.
#[lang="eq"]
pub trait Eq {
/// This method tests for `self` and `other` values to be equal, and is used by `==`.
fn eq(&self, other: &Self) -> bool;
/// This method tests for `!=`.
#[inline]
fn ne(&self, other: &Self) -> bool { !self.eq(other) }
}
/// Trait for equality comparisons which are [equivalence relations](
/// https://en.wikipedia.org/wiki/Equivalence_relation).
///
/// This means, that in addition to `a == b` and `a != b` being strict
/// inverses, the equality must be (for all `a`, `b` and `c`):
///
/// - reflexive: `a == a`;
/// - symmetric: `a == b` implies `b == a`; and
/// - transitive: `a == b` and `b == c` implies `a == c`.
pub trait TotalEq: Eq {
// FIXME #13101: this method is used solely by #[deriving] to
// assert that every component of a type implements #[deriving]
// itself, the current deriving infrastructure means doing this
// assertion without using a method on this trait is nearly
// impossible.
//
// This should never be implemented by hand.
#[doc(hidden)]
#[inline(always)]
fn assert_receiver_is_total_eq(&self) {}
}
/// An ordering is, e.g, a result of a comparison between two values.
#[deriving(Clone, Eq)]
pub enum Ordering {
/// An ordering where a compared value is less [than another].
Less = -1,
/// An ordering where a compared value is equal [to another].
Equal = 0,
/// An ordering where a compared value is greater [than another].
Greater = 1
}
/// Trait for types that form a [total order](
/// https://en.wikipedia.org/wiki/Total_order).
///
/// An order is a total order if it is (for all `a`, `b` and `c`):
///
/// - total and antisymmetric: exactly one of `a < b`, `a == b` or `a > b` is
/// true; and
/// - transitive, `a < b` and `b < c` implies `a < c`. The same must hold for
/// both `==` and `>`.
pub trait TotalOrd: TotalEq + Ord {
/// This method returns an ordering between `self` and `other` values.
///
/// By convention, `self.cmp(&other)` returns the ordering matching
/// the expression `self <operator> other` if true. For example:
///
/// ```
/// assert_eq!( 5u.cmp(&10), Less); // because 5 < 10
/// assert_eq!(10u.cmp(&5), Greater); // because 10 > 5
/// assert_eq!( 5u.cmp(&5), Equal); // because 5 == 5
/// ```
fn cmp(&self, other: &Self) -> Ordering;
}
impl TotalEq for Ordering {}
impl TotalOrd for Ordering {
#[inline]
fn cmp(&self, other: &Ordering) -> Ordering {
(*self as int).cmp(&(*other as int))
}
}
impl Ord for Ordering {
#[inline]
fn lt(&self, other: &Ordering) -> bool { (*self as int) < (*other as int) }
}
/// Combine orderings, lexically.
///
/// For example for a type `(int, int)`, two comparisons could be done.
/// If the first ordering is different, the first ordering is all that must be returned.
/// If the first ordering is equal, then second ordering is returned.
#[inline]
pub fn lexical_ordering(o1: Ordering, o2: Ordering) -> Ordering {
match o1 {
Equal => o2,
_ => o1
}
}
/// Trait for values that can be compared for a sort-order.
///
/// Ord only requires implementation of the `lt` method,
/// with the others generated from default implementations.
///
/// However it remains possible to implement the others separately,
/// for compatibility with floating-point NaN semantics
/// (cf. IEEE 754-2008 section 5.11).
#[lang="ord"]
pub trait Ord: Eq {
/// This method tests less than (for `self` and `other`) and is used by the `<` operator.
fn lt(&self, other: &Self) -> bool;
/// This method tests less than or equal to (`<=`).
#[inline]
fn le(&self, other: &Self) -> bool { !other.lt(self) }
/// This method tests greater than (`>`).
#[inline]
fn gt(&self, other: &Self) -> bool { other.lt(self) }
/// This method tests greater than or equal to (`>=`).
#[inline]
fn ge(&self, other: &Self) -> bool { !self.lt(other) }
}
/// The equivalence relation. Two values may be equivalent even if they are
/// of different types. The most common use case for this relation is
/// container types; e.g. it is often desirable to be able to use `&str`
/// values to look up entries in a container with `~str` keys.
pub trait Equiv<T> {
/// Implement this function to decide equivalent values.
fn equiv(&self, other: &T) -> bool;
}
/// Compare and return the minimum of two values.
#[inline]
pub fn min<T: TotalOrd>(v1: T, v2: T) -> T {
if v1 < v2 { v1 } else { v2 }
}
/// Compare and return the maximum of two values.
#[inline]
pub fn max<T: TotalOrd>(v1: T, v2: T) -> T {
if v1 > v2 { v1 } else { v2 }
}
// Implementation of Eq/TotalEq for some primitive types
#[cfg(not(test))]
mod impls {
use cmp::{Ord, TotalOrd, Eq, TotalEq, Ordering, Equal};
impl Eq for () {
#[inline]
fn eq(&self, _other: &()) -> bool { true }
#[inline]
fn ne(&self, _other: &()) -> bool { false }
}
impl TotalEq for () {}
impl Ord for () {
#[inline]
fn lt(&self, _other: &()) -> bool { false }
}
impl TotalOrd for () {
#[inline]
fn cmp(&self, _other: &()) -> Ordering { Equal }
}
// & pointers
impl<'a, T: Eq> Eq for &'a T {
#[inline]
fn eq(&self, other: & &'a T) -> bool { *(*self) == *(*other) }
#[inline]
fn ne(&self, other: & &'a T) -> bool { *(*self) != *(*other) }
}
impl<'a, T: Ord> Ord for &'a T {
#[inline]
fn lt(&self, other: & &'a T) -> bool { *(*self) < *(*other) }
#[inline]
fn le(&self, other: & &'a T) -> bool { *(*self) <= *(*other) }
#[inline]
fn ge(&self, other: & &'a T) -> bool { *(*self) >= *(*other) }
#[inline]
fn gt(&self, other: & &'a T) -> bool { *(*self) > *(*other) }
}
impl<'a, T: TotalOrd> TotalOrd for &'a T {
#[inline]
fn cmp(&self, other: & &'a T) -> Ordering { (**self).cmp(*other) }
}
impl<'a, T: TotalEq> TotalEq for &'a T {}
// @ pointers
impl<T:Eq> Eq for @T {
#[inline]
fn eq(&self, other: &@T) -> bool { *(*self) == *(*other) }
#[inline]
fn ne(&self, other: &@T) -> bool { *(*self) != *(*other) }
}
impl<T:Ord> Ord for @T {
#[inline]
fn lt(&self, other: &@T) -> bool { *(*self) < *(*other) }
#[inline]
fn le(&self, other: &@T) -> bool { *(*self) <= *(*other) }
#[inline]
fn ge(&self, other: &@T) -> bool { *(*self) >= *(*other) }
#[inline]
fn gt(&self, other: &@T) -> bool { *(*self) > *(*other) }
}
impl<T: TotalOrd> TotalOrd for @T {
#[inline]
fn cmp(&self, other: &@T) -> Ordering { (**self).cmp(*other) }
}
impl<T: TotalEq> TotalEq for @T {}
}
#[cfg(test)]
mod test {
use super::lexical_ordering;
#[test]
fn test_int_totalord() {
assert_eq!(5u.cmp(&10), Less);
assert_eq!(10u.cmp(&5), Greater);
assert_eq!(5u.cmp(&5), Equal);
assert_eq!((-5u).cmp(&12), Less);
assert_eq!(12u.cmp(-5), Greater);
}
#[test]
fn test_ordering_order() {
assert!(Less < Equal);
assert_eq!(Greater.cmp(&Less), Greater);
}
#[test]
fn test_lexical_ordering() {
fn t(o1: Ordering, o2: Ordering, e: Ordering) {
assert_eq!(lexical_ordering(o1, o2), e);
}
let xs = [Less, Equal, Greater];
for &o in xs.iter() {
t(Less, o, Less);
t(Equal, o, o);
t(Greater, o, Greater);
}
}
#[test]
fn test_user_defined_eq() {
// Our type.
struct SketchyNum {
num : int
}
// Our implementation of `Eq` to support `==` and `!=`.
impl Eq for SketchyNum {
// Our custom eq allows numbers which are near each other to be equal! :D
fn eq(&self, other: &SketchyNum) -> bool {
(self.num - other.num).abs() < 5
}
}
// Now these binary operators will work when applied!
assert!(SketchyNum {num: 37} == SketchyNum {num: 34});
assert!(SketchyNum {num: 25} != SketchyNum {num: 57});
}
}