forked from facebookresearch/habitat-lab
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathhab_ros_interface.py
250 lines (204 loc) · 8.66 KB
/
hab_ros_interface.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import rospy
from rospy.numpy_msg import numpy_msg
from rospy_tutorials.msg import Floats
from geometry_msgs.msg import Twist,Pose,PoseStamped
from std_msgs.msg import Header
import threading
import sys
sys.path = [
b for b in sys.path if "2.7" not in b
] # remove path's related to ROS from environment or else certain packages like cv2 can't be imported
import habitat
import habitat_sim.bindings as hsim
import magnum as mn
import numpy as np
import time
import cv2
from habitat.utils.visualizations.maps import COORDINATE_MIN, COORDINATE_MAX
lock = threading.Lock()
rospy.init_node("habitat", anonymous=False)
class sim_env(threading.Thread):
_x_axis = 0
_y_axis = 1
_z_axis = 2
_dt = 0.00478
_sensor_rate = 50 # hz
_r = rospy.Rate(_sensor_rate)
def __init__(self, env_config_file):
threading.Thread.__init__(self)
config = habitat.get_config(config_paths=env_config_file)
config.defrost()
config.TASK.MEASUREMENTS.append("TOP_DOWN_MAP")
config.TASK.SENSORS.append("HEADING_SENSOR")
config.freeze()
self.env = habitat.Env(config=config)
# always assume height equals width
self._sensor_resolution = {
"RGB": self.env._sim.config["RGB_SENSOR"]["HEIGHT"],
"DEPTH": self.env._sim.config["DEPTH_SENSOR"]["HEIGHT"],
}
self.env._sim._sim.agents[0].move_filter_fn = self.env._sim._sim._step_filter
self.observations = self.env.reset()
self.env._sim._sim.agents[0].state.velocity = np.float32([0, 0, 0])
self.env._sim._sim.agents[0].state.angular_velocity = np.float32([0, 0, 0])
self._pub_rgb = rospy.Publisher("~rgb", numpy_msg(Floats), queue_size=1)
self._pub_depth = rospy.Publisher("~depth", numpy_msg(Floats), queue_size=1)
self._pub_depth_and_pointgoal = rospy.Publisher(
"depth_and_pointgoal", numpy_msg(Floats), queue_size=1
)
self._pub_pose = rospy.Publisher('~pose', PoseStamped, queue_size=1)
print("created habitat_plant succsefully")
def _render(self):
self.env._update_step_stats() # think this increments episode count
sim_obs = self.env._sim._sim.get_sensor_observations()
self.observations = self.env._sim._sensor_suite.get_observations(sim_obs)
self.observations.update(
self.env._task.sensor_suite.get_observations(
observations=self.observations, episode=self.env.current_episode
)
)
self.env._task.measurements.update_measures(
episode=self.env.current_episode,action=987
)#action is a dummy value and is not important for this purpose
def _update_position(self):
state = self.env.sim.get_agent_state(0)
vz = -state.velocity[0]
vx = state.velocity[1]
dt = self._dt
start_pos = self.env._sim._sim.agents[0].scene_node.absolute_translation
ax = (
self.env._sim._sim.agents[0]
.scene_node.absolute_transformation()[self._z_axis]
.xyz
)
self.env._sim._sim.agents[0].scene_node.translate_local(ax * vz * dt)
ax = (
self.env._sim._sim.agents[0]
.scene_node.absolute_transformation()[self._x_axis]
.xyz
)
self.env._sim._sim.agents[0].scene_node.translate_local(ax * vx * dt)
end_pos = self.env._sim._sim.agents[0].scene_node.absolute_translation
filter_end = self.env._sim._sim.agents[0].move_filter_fn(start_pos, end_pos)
# Update the position to respect the filter
self.env._sim._sim.agents[0].scene_node.translate(filter_end - end_pos)
# self._render()
def _update_attitude(self):
""" update agent orientation given angular velocity and delta time"""
state = self.env.sim.get_agent_state(0)
yaw = state.angular_velocity[2] / 3.1415926 * 180
dt = self._dt
_rotate_local_fns = [
hsim.SceneNode.rotate_x_local,
hsim.SceneNode.rotate_y_local,
hsim.SceneNode.rotate_z_local,
]
_rotate_local_fns[self._y_axis](
self.env._sim._sim.agents[0].scene_node, mn.Deg(yaw * dt)
)
self.env._sim._sim.agents[0].scene_node.rotation = self.env._sim._sim.agents[
0
].scene_node.rotation.normalized()
# self._render()
def run(self):
"""Publish sensor readings through ROS on a different thread.
This method defines what the thread does when the start() method
of the threading class is called
"""
while not rospy.is_shutdown():
lock.acquire()
h = Header()
h.stamp = rospy.Time.now()
h.frame_id = "odom"
p = Pose()
hab_pos = self.env._sim._sim.agents[0].state.position
hab_rot = self.env._sim._sim.agents[0].state.rotation
#print(hab_rot.x)
print(self.env.get_metrics()['top_down_map'])
agent_map_coord = self.env.get_metrics()['top_down_map']['agent_map_coord']
print('got agent_map_coord')
map_resolution = self.env._config['TASK']['TOP_DOWN_MAP']['MAP_RESOLUTION']
print(map_resolution)
agent_map_coord = self.env.get_metrics()['top_down_map']['agent_map_coord']
p.position.x = -agent_map_coord[1]*(COORDINATE_MAX-COORDINATE_MIN)/map_resolution#-hab_pos[2]
p.position.y = -agent_map_coord[0]*(COORDINATE_MAX-COORDINATE_MIN)/map_resolution#-hab_pos[0]
p.position.z = 0 #hab_pos[1]
p.orientation.x = -hab_rot.z
p.orientation.y = -hab_rot.x
p.orientation.z = hab_rot.y
p.orientation.w = hab_rot.w
ps = PoseStamped()
ps.header = h
ps.pose = p
self._pub_pose.publish(ps)
rgb_with_res = np.concatenate(
(
np.float32(self.observations["rgb"].ravel()),
np.array(
[self._sensor_resolution["RGB"], self._sensor_resolution["RGB"]]
),
)
)
# multiply by 10 to get distance in meters
depth_with_res = np.concatenate(
(
np.float32(self.observations["depth"].ravel() * 10),
np.array(
[
self._sensor_resolution["DEPTH"],
self._sensor_resolution["DEPTH"],
]
),
)
)
depth_np = np.float32(self.observations["depth"].ravel())
pointgoal_np = np.float32(self.observations["pointgoal"].ravel())
lock.release()
self._pub_rgb.publish(np.float32(rgb_with_res))
self._pub_depth.publish(np.float32(depth_with_res))
depth_pointgoal_np = np.concatenate((depth_np, pointgoal_np))
self._pub_depth_and_pointgoal.publish(np.float32(depth_pointgoal_np))
self._r.sleep()
def set_linear_velocity(self, vx, vy):
self.env._sim._sim.agents[0].state.velocity[0] = vx
self.env._sim._sim.agents[0].state.velocity[1] = vy
def set_yaw(self, yaw):
self.env._sim._sim.agents[0].state.angular_velocity[2] = yaw
def update_orientation(self):
lock.acquire()
self._update_attitude()
self._update_position()
self._render()
lock.release()
def set_dt(self, dt):
self._dt = dt
def callback(vel, my_env):
lock.acquire()
my_env.set_linear_velocity(vel.linear.x, vel.linear.y)
my_env.set_yaw(vel.angular.z)
lock.release()
def main():
my_env = sim_env(env_config_file="configs/tasks/pointnav_rgbd.yaml")
my_env._render()
# start the thread that publishes sensor readings
my_env.start()
rospy.Subscriber("/cmd_vel", Twist, callback, (my_env), queue_size=1)
# define a list capturing how long it took
# to update agent orientation for past 3 instances
# TODO modify dt_list to depend on r1
dt_list = [0.009, 0.009, 0.009]
while not rospy.is_shutdown():
start_time = time.time()
# cv2.imshow("bc_sensor", my_env.observations['bc_sensor'])
# cv2.waitKey(100)
# time.sleep(0.1)
my_env.update_orientation()
dt_list.insert(0, time.time() - start_time)
dt_list.pop()
my_env.set_dt(sum(dt_list) / len(dt_list))
if __name__ == "__main__":
main()