Skip to content

Latest commit

 

History

History
68 lines (56 loc) · 1.58 KB

File metadata and controls

68 lines (56 loc) · 1.58 KB

703. 数据流中的第 K 大元素

设计一个找到数据流中第 k 大元素的类(class)。注意是排序后的第 k 大元素,不是第 k 个不同的元素。

请实现 KthLargest 类:

  • KthLargest(int k, int[] nums) 使用整数 k 和整数流 nums 初始化对象。
  • int add(int val) 将 val 插入数据流 nums 后,返回当前数据流中第 k 大的元素。

示例:

输入:
["KthLargest", "add", "add", "add", "add", "add"]
[[3, [4, 5, 8, 2]], [3], [5], [10], [9], [4]]
输出:
[null, 4, 5, 5, 8, 8]

解释:
KthLargest kthLargest = new KthLargest(3, [4, 5, 8, 2]);
kthLargest.add(3);   // return 4
kthLargest.add(5);   // return 5
kthLargest.add(10);  // return 5
kthLargest.add(9);   // return 8
kthLargest.add(4);   // return 8

提示:

  • 1 <= k <= 10^4
  • 0 <= nums.length <= 10^4
  • -10^4 <= nums[i] <= 10^4
  • -10^4 <= val <= 10^4
  • 最多调用 add 方法 104 次
  • 题目数据保证,在查找第 k 大元素时,数组中至少有 k 个元素

思路

k大就用小顶堆

k小就用大顶堆

class KthLargest {
public:
    KthLargest(int k, vector<int>& nums) {
        n = k;
        for (int num : nums) {
            q.push(num);
        }
    }
    int add(int val) {
        q.push(val);
        while (q.size() > n) {
             q.pop();
        }
        int res = q.top();
        return res;
    }
    int n;
    priority_queue<int,vector<int>, greater<int>> q;
};

/**
 * Your KthLargest object will be instantiated and called as such:
 * KthLargest* obj = new KthLargest(k, nums);
 * int param_1 = obj->add(val);
 */