给定一个正整数 n
,生成一个包含 1 到 n2所有元素,且元素按顺时针顺序螺旋排列的正方形矩阵。
示例 :
输入: 3
输出:
[
[ 1, 2, 3 ],
[ 8, 9, 4 ],
[ 7, 6, 5 ]
]
类似螺旋矩阵I的解法,初始化二维数组,初始化一个一维数组为1 到 n2,类似螺旋矩阵I,找出四个边界,循环,赋值,每赋一次值一维数组就弹出这个该元素。
O(n2) 遍历矩阵所有元素
O(n2) 需要一个n*n矩阵存储元素
C++:
class Solution {
public:
vector<vector<int>> generateMatrix(int n) {
vector<vector<int>> res (n,vector<int>(n,0)); // 初始化为n*n的矩阵
vector<int> out;
int m = pow(n,2);
int u = 0;
int d = n-1;
int l = 0;
int r = n-1;
for (int i=m;i>0;i--)
{
out.push_back(i);
}
while(true) // 注意换成while(nums<=m)会节省时间
{
for(int i=l;i<=r;i++)
{
res[u][i]=out.back();
out.pop_back();
}
if (++u>d) break;
for (int i=u;i<=d;i++)
{
res[i][r] = out.back();
out.pop_back();
}
if (--r<l) break;
for (int i=r;i>=l;i--)
{
res[d][i] = out.back();
out.pop_back();
}
if (--d<u) break;
for (int i=d;i>=u;i--)
{
res[i][l] = out.back();
out.pop_back();
}
if (++l>r) break;
}
return res;
}
};
class Solution {
public:
vector<vector<int>> generateMatrix(int n) {
vector<vector<int>> res (n,vector<int>(n,0));
int m = pow(n,2);
int u = 0;
int d = n-1;
int l = 0;
int r = n-1;
int num = 1;
while(num<=m)
{
for(int i=l;i<=r;i++)
{
res[u][i]=num++;
}
++u;
for (int i=u;i<=d;i++)
{
res[i][r] = num++;
}
--r;
for (int i=r;i>=l;i--)
{
res[d][i] = num++;
}
--d;
for (int i=d;i>=u;i--)
{
res[i][l] = num++;
}
++l;
}
return res;
}
};
class Solution:
def generateMatrix(self, n: int) -> List[List[int]]:
res = [[0]* n for _ in range(n)] ##python初始化二维数组
out = [i for i in range(n*n,0,-1)]
u = 0
d = n-1
l = 0
r = n-1
while True: ## 可以改为while num<=pow(n,2): 更节省时间
for i in range(l,r+1,1):
res[u][i] = out[-1]
#del out[-1]
out.pop()
u+=1
if u>d:break
for i in range(u,d+1,1):
res[i][r] = out[-1]
del out[-1]
r-=1
if r<l:break
for i in range(r,l-1,-1):
res[d][i] = out[-1]
del out[-1]
d-=1
if d<u:break
for i in range(d,u-1,-1):
res[i][l]=out[-1]
del out[-1]
l+=1
if l>r:break
return res
class Solution:
def generateMatrix(self, n: int) -> List[List[int]]:
res = [[0]* n for _ in range(n)] ##python初始化二维数组
# res = [[0 for _ in range(n)] for _ in range(n)]
u = 0
d = n-1
l = 0
r = n-1
m = pow(n,2)
num = 1
while num<=m:
for i in range(l,r+1,1):
res[u][i] = num
num+=1
u+=1
for i in range(u,d+1,1):
res[i][r] = num
num+=1
r-=1
for i in range(r,l-1,-1):
res[d][i] = num
num+=1
d-=1
for i in range(d,u-1,-1):
res[i][l]=num
num+=1
l+=1
return res