-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathparse_tcx.py
151 lines (114 loc) · 5.92 KB
/
parse_tcx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
"""Some functions for parsing a TCX file (specifically, a TCX file
downloaded from Strava, which was generated based on data recorded by a
Garmin vívoactive 3) and creating a Pandas DataFrame with the data.
"""
from datetime import datetime, timedelta
from typing import Dict, Optional, Any, Union, Tuple
import lxml.etree
import pandas as pd
import dateutil.parser as dp
NAMESPACES = {
'ns': 'http://www.garmin.com/xmlschemas/TrainingCenterDatabase/v2',
'ns2': 'http://www.garmin.com/xmlschemas/UserProfile/v2',
'ns3': 'http://www.garmin.com/xmlschemas/ActivityExtension/v2',
'ns4': 'http://www.garmin.com/xmlschemas/ProfileExtension/v1',
'ns5': 'http://www.garmin.com/xmlschemas/ActivityGoals/v1'
}
# The names of the columns we will use in our points DataFrame
POINTS_COLUMN_NAMES = ['latitude', 'longitude', 'elevation', 'time', 'heart_rate', 'cadence', 'speed', 'lap']
# The names of the columns we will use in our laps DataFrame
LAPS_COLUMN_NAMES = ['number', 'start_time', 'distance', 'total_time', 'max_speed', 'max_hr', 'avg_hr']
def get_tcx_lap_data(lap: lxml.etree._Element) -> Dict[str, Union[float, datetime, timedelta, int]]:
"""Extract some data from an XML element representing a lap and
return it as a dict.
"""
data: Dict[str, Union[float, datetime, timedelta, int]] = {}
# Note that because each element's attributes and text are returned as strings, we need to convert those strings
# to the appropriate datatype (datetime, float, int, etc).
start_time_str = lap.attrib['StartTime']
data['start_time'] = dp.parse(start_time_str)
distance_elem = lap.find('ns:DistanceMeters', NAMESPACES)
if distance_elem is not None:
data['distance'] = float(distance_elem.text)
total_time_elem = lap.find('ns:TotalTimeSeconds', NAMESPACES)
if total_time_elem is not None:
data['total_time'] = timedelta(seconds=float(total_time_elem.text))
max_speed_elem = lap.find('ns:MaximumSpeed', NAMESPACES)
if max_speed_elem is not None:
data['max_speed'] = float(max_speed_elem.text)
max_hr_elem = lap.find('ns:MaximumHeartRateBpm', NAMESPACES)
if max_hr_elem is not None:
data['max_hr'] = float(max_hr_elem.find('ns:Value', NAMESPACES).text)
avg_hr_elem = lap.find('ns:AverageHeartRateBpm', NAMESPACES)
if avg_hr_elem is not None:
data['avg_hr'] = float(avg_hr_elem.find('ns:Value', NAMESPACES).text)
return data
def get_tcx_point_data(point: lxml.etree._Element) -> Optional[Dict[str, Union[float, int, str, datetime]]]:
"""Extract some data from an XML element representing a track point
and return it as a dict.
"""
data: Dict[str, Union[float, int, str, datetime]] = {}
position = point.find('ns:Position', NAMESPACES)
if position is None:
# This Trackpoint element has no latitude or longitude data.
# For simplicity's sake, we will ignore such points.
return None
else:
data['latitude'] = float(position.find('ns:LatitudeDegrees', NAMESPACES).text)
data['longitude'] = float(position.find('ns:LongitudeDegrees', NAMESPACES).text)
time_str = point.find('ns:Time', NAMESPACES).text
data['time'] = dp.parse(time_str)
elevation_elem = point.find('ns:AltitudeMeters', NAMESPACES)
if elevation_elem is not None:
data['elevation'] = float(elevation_elem.text)
hr_elem = point.find('ns:HeartRateBpm', NAMESPACES)
if hr_elem is not None:
data['heart_rate'] = int(hr_elem.find('ns:Value', NAMESPACES).text)
cad_elem = point.find('ns:Cadence', NAMESPACES)
if cad_elem is not None:
data['cadence'] = int(cad_elem.text)
# The ".//" here basically tells lxml to search recursively down the tree for the relevant tag, rather than just the
# immediate child elements of speed_elem. See https://lxml.de/tutorial.html#elementpath
speed_elem = point.find('.//ns3:Speed', NAMESPACES)
if speed_elem is not None:
data['speed'] = float(speed_elem.text)
return data
def get_dataframes(fname: str) -> Tuple[pd.DataFrame, pd.DataFrame]:
"""Takes the path to a TCX file (as a string) and returns two Pandas
DataFrames: one containing data about the laps, and one containing
data about the individual points.
"""
tree = lxml.etree.parse(fname)
root = tree.getroot()
activity = root.find('ns:Activities', NAMESPACES)[0] # Assuming we know there is only one Activity in the TCX file
# (or we are only interested in the first one)
points_data = []
laps_data = []
lap_no = 1
for lap in activity.findall('ns:Lap', NAMESPACES):
# Get data about the lap itself
single_lap_data = get_tcx_lap_data(lap)
single_lap_data['number'] = lap_no
laps_data.append(single_lap_data)
# Get data about the track points in the lap
track = lap.find('ns:Track', NAMESPACES)
for point in track.findall('ns:Trackpoint', NAMESPACES):
single_point_data = get_tcx_point_data(point)
if single_point_data:
single_point_data['lap'] = lap_no
points_data.append(single_point_data)
lap_no += 1
# Create DataFrames from the data we have collected. If any information is missing from a particular lap or track
# point, it will show up as a null value or "NaN" in the DataFrame.
laps_df = pd.DataFrame(laps_data, columns=LAPS_COLUMN_NAMES)
laps_df.set_index('number', inplace=True)
points_df = pd.DataFrame(points_data, columns=POINTS_COLUMN_NAMES)
return laps_df, points_df
if __name__ == '__main__':
from sys import argv
fname = argv[1] # Path to TCX file to be given as first argument to script
laps_df, points_df = get_dataframes(fname)
print('LAPS:')
print(laps_df)
print('\nPOINTS:')
print(points_df)