-
Notifications
You must be signed in to change notification settings - Fork 199
/
Copy pathBreadthFirstPaths.java
243 lines (218 loc) · 7.84 KB
/
BreadthFirstPaths.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
/*************************************************************************
* Compilation: javac BreadthFirstPaths.java
* Execution: java BreadthFirstPaths G s
* Dependencies: Graph.java Queue.java Stack.java StdOut.java
* Data files: http://algs4.cs.princeton.edu/41undirected/tinyCG.txt
*
* Run breadth first search on an undirected graph.
* Runs in O(E + V) time.
*
* % java Graph tinyCG.txt
* 6 8
* 0: 2 1 5
* 1: 0 2
* 2: 0 1 3 4
* 3: 5 4 2
* 4: 3 2
* 5: 3 0
*
* % java BreadthFirstPaths tinyCG.txt 0
* 0 to 0 (0): 0
* 0 to 1 (1): 0-1
* 0 to 2 (1): 0-2
* 0 to 3 (2): 0-2-3
* 0 to 4 (2): 0-2-4
* 0 to 5 (1): 0-5
*
* % java BreadthFirstPaths largeG.txt 0
* 0 to 0 (0): 0
* 0 to 1 (418): 0-932942-474885-82707-879889-971961-...
* 0 to 2 (323): 0-460790-53370-594358-780059-287921-...
* 0 to 3 (168): 0-713461-75230-953125-568284-350405-...
* 0 to 4 (144): 0-460790-53370-310931-440226-380102-...
* 0 to 5 (566): 0-932942-474885-82707-879889-971961-...
* 0 to 6 (349): 0-932942-474885-82707-879889-971961-...
*
*************************************************************************/
/**
* The <tt>BreadthFirstPaths</tt> class represents a data type for finding
* shortest paths (number of edges) from a source vertex <em>s</em>
* (or a set of source vertices)
* to every other vertex in an undirected graph.
* <p>
* This implementation uses breadth-first search.
* The constructor takes time proportional to <em>V</em> + <em>E</em>,
* where <em>V</em> is the number of vertices and <em>E</em> is the number of edges.
* It uses extra space (not including the graph) proportional to <em>V</em>.
* <p>
* For additional documentation, see <a href="/algs4/41graph">Section 4.1</a> of
* <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne.
*
* @author Robert Sedgewick
* @author Kevin Wayne
*/
public class BreadthFirstPaths {
private static final int INFINITY = Integer.MAX_VALUE;
private boolean[] marked; // marked[v] = is there an s-v path
private int[] edgeTo; // edgeTo[v] = previous edge on shortest s-v path
private int[] distTo; // distTo[v] = number of edges shortest s-v path
/**
* Computes the shortest path between the source vertex <tt>s</tt>
* and every other vertex in the graph <tt>G</tt>.
* @param G the graph
* @param s the source vertex
*/
public BreadthFirstPaths(Graph G, int s) {
marked = new boolean[G.V()];
distTo = new int[G.V()];
edgeTo = new int[G.V()];
bfs(G, s);
assert check(G, s);
}
/**
* Computes the shortest path between any one of the source vertices in <tt>sources</tt>
* and every other vertex in graph <tt>G</tt>.
* @param G the graph
* @param sources the source vertices
*/
public BreadthFirstPaths(Graph G, Iterable<Integer> sources) {
marked = new boolean[G.V()];
distTo = new int[G.V()];
edgeTo = new int[G.V()];
for (int v = 0; v < G.V(); v++) distTo[v] = INFINITY;
bfs(G, sources);
}
// breadth-first search from a single source
private void bfs(Graph G, int s) {
Queue<Integer> q = new Queue<Integer>();
for (int v = 0; v < G.V(); v++) distTo[v] = INFINITY;
distTo[s] = 0;
marked[s] = true;
q.enqueue(s);
while (!q.isEmpty()) {
int v = q.dequeue();
for (int w : G.adj(v)) {
if (!marked[w]) {
edgeTo[w] = v;
distTo[w] = distTo[v] + 1;
marked[w] = true;
q.enqueue(w);
}
}
}
}
// breadth-first search from multiple sources
private void bfs(Graph G, Iterable<Integer> sources) {
Queue<Integer> q = new Queue<Integer>();
for (int s : sources) {
marked[s] = true;
distTo[s] = 0;
q.enqueue(s);
}
while (!q.isEmpty()) {
int v = q.dequeue();
for (int w : G.adj(v)) {
if (!marked[w]) {
edgeTo[w] = v;
distTo[w] = distTo[v] + 1;
marked[w] = true;
q.enqueue(w);
}
}
}
}
/**
* Is there a path between the source vertex <tt>s</tt> (or sources) and vertex <tt>v</tt>?
* @param v the vertex
* @return <tt>true</tt> if there is a path, and <tt>false</tt> otherwise
*/
public boolean hasPathTo(int v) {
return marked[v];
}
/**
* Returns the number of edges in a shortest path between the source vertex <tt>s</tt>
* (or sources) and vertex <tt>v</tt>?
* @param v the vertex
* @return the number of edges in a shortest path
*/
public int distTo(int v) {
return distTo[v];
}
/**
* Returns a shortest path between the source vertex <tt>s</tt> (or sources)
* and <tt>v</tt>, or <tt>null</tt> if no such path.
* @param v the vertex
* @return the sequence of vertices on a shortest path, as an Iterable
*/
public Iterable<Integer> pathTo(int v) {
if (!hasPathTo(v)) return null;
Stack<Integer> path = new Stack<Integer>();
int x;
for (x = v; distTo[x] != 0; x = edgeTo[x])
path.push(x);
path.push(x);
return path;
}
// check optimality conditions for single source
private boolean check(Graph G, int s) {
// check that the distance of s = 0
if (distTo[s] != 0) {
StdOut.println("distance of source " + s + " to itself = " + distTo[s]);
return false;
}
// check that for each edge v-w dist[w] <= dist[v] + 1
// provided v is reachable from s
for (int v = 0; v < G.V(); v++) {
for (int w : G.adj(v)) {
if (hasPathTo(v) != hasPathTo(w)) {
StdOut.println("edge " + v + "-" + w);
StdOut.println("hasPathTo(" + v + ") = " + hasPathTo(v));
StdOut.println("hasPathTo(" + w + ") = " + hasPathTo(w));
return false;
}
if (hasPathTo(v) && (distTo[w] > distTo[v] + 1)) {
StdOut.println("edge " + v + "-" + w);
StdOut.println("distTo[" + v + "] = " + distTo[v]);
StdOut.println("distTo[" + w + "] = " + distTo[w]);
return false;
}
}
}
// check that v = edgeTo[w] satisfies distTo[w] + distTo[v] + 1
// provided v is reachable from s
for (int w = 0; w < G.V(); w++) {
if (!hasPathTo(w) || w == s) continue;
int v = edgeTo[w];
if (distTo[w] != distTo[v] + 1) {
StdOut.println("shortest path edge " + v + "-" + w);
StdOut.println("distTo[" + v + "] = " + distTo[v]);
StdOut.println("distTo[" + w + "] = " + distTo[w]);
return false;
}
}
return true;
}
/**
* Unit tests the <tt>BreadthFirstPaths</tt> data type.
*/
public static void main(String[] args) {
In in = new In(args[0]);
Graph G = new Graph(in);
// StdOut.println(G);
int s = Integer.parseInt(args[1]);
BreadthFirstPaths bfs = new BreadthFirstPaths(G, s);
for (int v = 0; v < G.V(); v++) {
if (bfs.hasPathTo(v)) {
StdOut.printf("%d to %d (%d): ", s, v, bfs.distTo(v));
for (int x : bfs.pathTo(v)) {
if (x == s) StdOut.print(x);
else StdOut.print("-" + x);
}
StdOut.println();
}
else {
StdOut.printf("%d to %d (-): not connected\n", s, v);
}
}
}
}