-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path11.py
365 lines (301 loc) · 9.39 KB
/
11.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
from common.util import *
from typing import List, Tuple
from copy import deepcopy
# --- Day 11: Seating System ---
# Your plane lands with plenty of time to spare. The final leg of your journey is a ferry that goes directly
# to the tropical island where you can finally start your vacation. As you reach the waiting area to board the ferry,
# you realize you're so early, nobody else has even arrived yet!
# By modeling the process people use to choose (or abandon) their seat in the waiting area,
# you're pretty sure you can predict the best place to sit. You make a quick map of the seat layout (your puzzle input).
# The seat layout fits neatly on a grid. Each position is either floor (.), an empty seat (L),
# or an occupied seat (#). For example, the initial seat layout might look like this:
# L.LL.LL.LL
# LLLLLLL.LL
# L.L.L..L..
# LLLL.LL.LL
# L.LL.LL.LL
# L.LLLLL.LL
# ..L.L.....
# LLLLLLLLLL
# L.LLLLLL.L
# L.LLLLL.LL
# Now, you just need to model the people who will be arriving shortly.
# Fortunately, people are entirely predictable and always follow a simple set of rules.
# All decisions are based on the number of occupied seats adjacent to a given seat
# (one of the eight positions immediately up, down, left, right, or diagonal from the seat).
# The following rules are applied to every seat simultaneously:
# If a seat is empty (L) and there are no occupied seats adjacent to it, the seat becomes occupied.
# If a seat is occupied (#) and four or more seats adjacent to it are also occupied, the seat becomes empty.
# Otherwise, the seat's state does not change.
# Floor (.) never changes; seats don't move, and nobody sits on the floor.
# After one round of these rules, every seat in the example layout becomes occupied:
# #.##.##.##
# #######.##
# #.#.#..#..
# ####.##.##
# #.##.##.##
# #.#####.##
# ..#.#.....
# ##########
# #.######.#
# #.#####.##
# After a second round, the seats with four or more occupied adjacent seats become empty again:
# #.LL.L#.##
# #LLLLLL.L#
# L.L.L..L..
# #LLL.LL.L#
# #.LL.LL.LL
# #.LLLL#.##
# ..L.L.....
# #LLLLLLLL#
# #.LLLLLL.L
# #.#LLLL.##
# This process continues for three more rounds:
# #.##.L#.##
# #L###LL.L#
# L.#.#..#..
# #L##.##.L#
# #.##.LL.LL
# #.###L#.##
# ..#.#.....
# #L######L#
# #.LL###L.L
# #.#L###.##
# #.#L.L#.##
# #LLL#LL.L#
# L.L.L..#..
# #LLL.##.L#
# #.LL.LL.LL
# #.LL#L#.##
# ..L.L.....
# #L#LLLL#L#
# #.LLLLLL.L
# #.#L#L#.##
# #.#L.L#.##
# #LLL#LL.L#
# L.#.L..#..
# #L##.##.L#
# #.#L.LL.LL
# #.#L#L#.##
# ..L.L.....
# #L#L##L#L#
# #.LLLLLL.L
# #.#L#L#.##
# At this point, something interesting happens: the chaos stabilizes and further applications
# of these rules cause no seats to change state! Once people stop moving around, you count 37 occupied seats.
# Simulate your seating area by applying the seating rules repeatedly until no seats change state.
# How many seats end up occupied?
class Seating:
def __init__(self, seat_map: List[List[str]]):
self.seat_map = seat_map
def get_adj_coords(self, x: int, y: int) -> int:
# Check 8 adjacent
# (-1, -1) (-1, 0) (-1, 1)
# (0, -1) (0, 0) (0, 1)
# (1, -1) (1, 0) (1, 1)
# Boundaries
x_min, x_max, y_min, y_max = 0, len(self.seat_map[0]), 0, len(self.seat_map)
adj_map = [(-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1)]
return [
(i + x, j + y)
for i, j in adj_map
if x_min <= i + x < x_max and y_min <= j + y < y_max
] # Only compute inside the boundary
@staticmethod
def count_occupied(seat_map: List[List[str]]) -> int:
count = 0
for y, y_list in enumerate(seat_map):
for x in range(len(y_list)):
if seat_map[y][x] == "#":
count += 1
return count
def count_occupied_adj(self, adj_list: List[Tuple[int, int]]) -> int:
count = 0
for x, y in adj_list:
if self.seat_map[y][x] == "#":
count += 1
return count
def step(self) -> List[List[str]]:
"""occupy or empty"""
result_map = deepcopy(self.seat_map)
for y, y_list in enumerate(self.seat_map):
for x in range(len(y_list)):
if self.seat_map[y][x] == "L":
adj_list = self.get_adj_coords(x, y)
if self.count_occupied_adj(adj_list) == 0:
result_map[y][x] = "#"
elif self.seat_map[y][x] == "#":
adj_list = self.get_adj_coords(x, y)
if self.count_occupied_adj(adj_list) >= 4:
result_map[y][x] = "L"
self.seat_map = result_map
return result_map
def part1(data: List[int]) -> int:
seating = Seating(data)
prev_seat_map = None
while True:
seating.step()
if prev_seat_map == seating.seat_map:
return Seating.count_occupied(prev_seat_map)
prev_seat_map = seating.seat_map
data = get_data("day11", grid_parser)
print(part1(data))
# TEST
test1 = """L.LL.LL.LL
LLLLLLL.LL
L.L.L..L..
LLLL.LL.LL
L.LL.LL.LL
L.LLLLL.LL
..L.L.....
LLLLLLLLLL
L.LLLLLL.L
L.LLLLL.LL
"""
print(part1(grid_parser(test1)))
# --- Part Two ---
# As soon as people start to arrive, you realize your mistake. People don't just care about adjacent seats -
# they care about the first seat they can see in each of those eight directions!
# Now, instead of considering just the eight immediately adjacent seats, consider the first seat in each of those eight directions.
# For example, the empty seat below would see eight occupied seats:
# .......#.
# ...#.....
# .#.......
# .........
# ..#L....#
# ....#....
# .........
# #........
# ...#.....
# The leftmost empty seat below would only see one empty seat, but cannot see any of the occupied ones:
# .............
# .L.L.#.#.#.#.
# .............
# The empty seat below would see no occupied seats:
# .##.##.
# #.#.#.#
# ##...##
# ...L...
# ##...##
# #.#.#.#
# .##.##.
# Also, people seem to be more tolerant than you expected: it now takes five or more visible occupied seats
# for an occupied seat to become empty (rather than four or more from the previous rules). The other rules still apply:
# empty seats that see no occupied seats become occupied, seats matching no rule don't change, and floor never changes.
# Given the same starting layout as above, these new rules cause the seating area to shift around as follows:
# L.LL.LL.LL
# LLLLLLL.LL
# L.L.L..L..
# LLLL.LL.LL
# L.LL.LL.LL
# L.LLLLL.LL
# ..L.L.....
# LLLLLLLLLL
# L.LLLLLL.L
# L.LLLLL.LL
# #.##.##.##
# #######.##
# #.#.#..#..
# ####.##.##
# #.##.##.##
# #.#####.##
# ..#.#.....
# ##########
# #.######.#
# #.#####.##
# #.LL.LL.L#
# #LLLLLL.LL
# L.L.L..L..
# LLLL.LL.LL
# L.LL.LL.LL
# L.LLLLL.LL
# ..L.L.....
# LLLLLLLLL#
# #.LLLLLL.L
# #.LLLLL.L#
# #.L#.##.L#
# #L#####.LL
# L.#.#..#..
# ##L#.##.##
# #.##.#L.##
# #.#####.#L
# ..#.#.....
# LLL####LL#
# #.L#####.L
# #.L####.L#
# #.L#.L#.L#
# #LLLLLL.LL
# L.L.L..#..
# ##LL.LL.L#
# L.LL.LL.L#
# #.LLLLL.LL
# ..L.L.....
# LLLLLLLLL#
# #.LLLLL#.L
# #.L#LL#.L#
# #.L#.L#.L#
# #LLLLLL.LL
# L.L.L..#..
# ##L#.#L.L#
# L.L#.#L.L#
# #.L####.LL
# ..#.#.....
# LLL###LLL#
# #.LLLLL#.L
# #.L#LL#.L#
# #.L#.L#.L#
# #LLLLLL.LL
# L.L.L..#..
# ##L#.#L.L#
# L.L#.LL.L#
# #.LLLL#.LL
# ..#.L.....
# LLL###LLL#
# #.LLLLL#.L
# #.L#LL#.L#
# Again, at this point, people stop shifting around and the seating area reaches equilibrium. Once this occurs, you count 26 occupied seats.
# Given the new visibility method and the rule change for occupied seats becoming empty, once equilibrium is reached, how many seats end up occupied?
# class VisibleSeating(Seating):
# def __init__(self, seat_map: List[List[str]]):
# self.seat_map = seat_map
# self.x_min = 0
# self.x_max = len(self.seat_map[0])
# self.y_min = 0
# self.y_max = len(self.seat_map)
# def count_visible_occupied(self, visible_list: List[Tuple[int, int]]) -> int:
# count = 0
# for x, y in visible_list:
# if self.seat_map[y][x] == "#":
# count += 1
# return count
# def get_visible_coords(self, x: int, y: int, multiplier: int) -> int:
# # Boundaries
# adj_map = [(-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1)]
# visible_map = [
# (adj_x * multiplier, adj_y * multiplier) for adj_x, adj_y in adj_map
# ]
# return [
# (i + x, j + y)
# for i, j in visible_map
# if self.x_min <= i + x < self.x_max and self.y_min <= j + y < self.y_max
# ] # Only compute inside the boundary
# def step(self) -> List[List[str]]:
# """occupy or empty"""
# result_map = deepcopy(self.seat_map)
# for y, y_list in enumerate(self.seat_map):
# for x in range(len(y_list)):
# while
# if self.seat_map[y][x] == "L":
# adj_list = self.get_adj_coords(x, y)
# if self.count_occupied_adj(adj_list) == 0:
# result_map[y][x] = "#"
# elif self.seat_map[y][x] == "#":
# adj_list = self.get_adj_coords(x, y)
# if self.count_occupied_adj(adj_list) >= 4:
# result_map[y][x] = "L"
# self.seat_map = result_map
# return result_map
# def part2(data: List[int]) -> int:
# pass
# data = get_data("day11", grid_parser)
# print(part2(data))