@@ -298,31 +298,39 @@ You could select either [GCS](https://cloud.google.com/storage/) or [BigQuery](h
298298
2992991 . Enable [ AutoML Tables] ( https://cloud.google.com/automl-tables/docs/quickstart#before_you_begin ) on GCP.
300300
301- 2 . Visit the [ AutoML Tables UI] ( https://console.cloud.google.com/automl-tables ) to begin the process of creating your dataset and training your model. \
302- > ![ alt text] ( https://storage.cloud.google.com/cloud-ml-data/automl-tables/notebooks/automl_stockout_img/Image%201%202019-03-13%20at%201.02.53%20PM.png )
301+ 2 . Visit the [ AutoML Tables UI] ( https://console.cloud.google.com/automl-tables ) to begin the process of creating your dataset and training your model.
302+
303+ ![ ] ( resources/automl_stockout_img/Image%201%202019-03-13%20at%201.02.53%20PM.png )
303304
3043053 . Import your dataset or the dataset you downloaded in the last section \
305- Click <+New Dataset> → Dataset Name <StockOut > → Click Create Dataset \
306- > ![ alt text] ( https://storage.cloud.google.com/cloud-ml-data/automl-tables/notebooks/automl_stockout_img/Image%202%202019-03-13%20at%201.05.17%20PM.png )
306+ Click <+New Dataset> → Dataset Name <StockOut > → Click Create Dataset
307+
308+ ![ ] ( resources/automl_stockout_img/Image%202%202019-03-13%20at%201.05.17%20PM.png )
307309
3083104 . You can import data from BigQuery or GCS bucket \
309311 a. For BigQuery enter your GCP project ID, Dataset ID and Table ID \
310- After specifying dataset click import dataset \
311- > ![ alt text] https://storage.cloud.google.com/cloud-ml-data/automl-tables/notebooks/automl_stockout_img/Image%203%202019-03-13%20at%201.08.44%20PM.png )
312+ After specifying dataset click import dataset
313+
314+ ![ ] ( resources/automl_stockout_img/Image%203%202019-03-13%20at%201.08.44%20PM.png )
315+
312316 b. For GCS enter the GCS object location by clicking on BROWSE \
313- After specifying dataset click import dataset \
314- > ![ alt text] ( https://storage.cloud.google.com/cloud-ml-data/automl-tables/notebooks/automl_stockout_img/Image%204%202019-03-13%20at%201.09.56%20PM.png )
317+ After specifying dataset click import dataset
318+
319+ ![ ] ( resources/automl_stockout_img/Image%204%202019-03-13%20at%201.09.56%20PM.png )
320+
315321 Depending on the size of the dataset this import can take some time.
316322
3173235 . Once the import is complete you can set the schema of the imported dataset based on your business understanding of the data \
318324 a. Select Label i.e. Stockout \
319325 b. Select Variable Type for all features \
320- c. Click Continue \
321- > ![ alt text] ( https://storage.cloud.google.com/cloud-ml-data/automl-tables/notebooks/automl_stockout_img/Image%206%202019-03-13%20at%201.20.57%20PM.png )
326+ c. Click Continue
327+
328+ ![ ] ( resources/automl_stockout_img/Image%206%202019-03-13%20at%201.20.57%20PM.png )
322329
3233306 . The imported dataset is now analyzed \
324- This helps you analyze the size of your dataset, dig into missing values if any, calculate correlation, mean and standard deviation. If this data quality looks good to you then we can move on to the next tab i.e. train. \
325- > ![ alt text] ( https://storage.cloud.google.com/cloud-ml-data/automl-tables/notebooks/automl_stockout_img/Image%20new%201%202019-03-25%20at%2012.43.13%20AM.png )
331+ This helps you analyze the size of your dataset, dig into missing values if any, calculate correlation, mean and standard deviation. If this data quality looks good to you then we can move on to the next tab i.e. train.
332+
333+ ![ ] ( resources/automl_stockout_img/Image%20new%201%202019-03-25%20at%2012.43.13%20AM.png )
326334
3273357 . Train \
328336 a. Select a model name \
@@ -331,10 +339,11 @@ This helps you analyze the size of your dataset, dig into missing values if any,
331339 d. Select optimization objectives. Such as: ROC, Log Loss or PR curve \
332340 (As our data is imbalances we use PR curve as our optimization metric) \
333341 e. Click TRAIN \
334- f. Training the model can take some time \
335- ![ alt text] ( https://storage.cloud.google.com/cloud-ml-data/automl-tables/notebooks/automl_stockout_img/Image%208%202019-03-13%20at%201.34.08%20PM.png )
342+ f. Training the model can take some time
343+
344+ ![ ] ( resources/automl_stockout_img/Image%208%202019-03-13%20at%201.34.08%20PM.png )
336345
337- ![ alt text ] ( https://storage.cloud.google.com/cloud-ml-data/automl-tables/notebooks /automl_stockout_img/Image%20new%202%202019-03-25%20at%2012.44.18%20AM.png)
346+ ![ ] ( resources /automl_stockout_img/Image%20new%202%202019-03-25%20at%2012.44.18%20AM.png)
338347
3393488 . Once the model is trained you can click on the evaluate tab \
340349This tab gives you stats for model evaluation \
@@ -343,16 +352,18 @@ This tab gives you stats for model evaluation \
343352 Area Under ROC Curve: 0.893 \
344353 Accuracy: 92.5% \
345354 Log Loss: 0.217 \
346- Selecting the threshold lets you set a desired precision and recall on your predictions. \
347- > ![ alt text] ( https://storage.cloud.google.com/cloud-ml-data/automl-tables/notebooks/automl_stockout_img/Image%20new%203%202019-03-25%20at%2012.49.40%20AM.png )
355+ Selecting the threshold lets you set a desired precision and recall on your predictions.
356+
357+ ![ ] ( resources/automl_stockout_img/Image%20new%203%202019-03-25%20at%2012.49.40%20AM.png )
348358
3493599 . Using the model created let's use batch prediction to predict stock-out \
350360 a. Batch prediction data inputs could come from BigQuery or your GCS bucket. \
351361 b. Select the GCS bucket to store the results of your batch prediction \
352- c. Click Send Batch Predictions \
353- > ![ alt text] ( https://storage.cloud.google.com/cloud-ml-data/automl-tables/notebooks/automl_stockout_img/Image%2012%202019-03-13%20at%201.56.43%20PM.png )
362+ c. Click Send Batch Predictions
363+
364+ ![ ] ( resources/automl_stockout_img/Image%2012%202019-03-13%20at%201.56.43%20PM.png )
354365
355- > ![ alt text ] ( https://storage.cloud.google.com/cloud-ml-data/automl-tables/notebooks /automl_stockout_img/Image%2013%202019-03-13%20at%201.59.18%20PM.png)
366+ ![ ] ( resources /automl_stockout_img/Image%2013%202019-03-13%20at%201.59.18%20PM.png)
356367
357368
358369## Building the model using AutoML Tables Python Client Library
@@ -362,7 +373,7 @@ In this notebook, you will learn how to build the same model as you have done on
362373
363374## Evaluation results and business impact
364375
365- > ![ alt text ] ( https://storage.cloud.google.com/cloud-ml-data/automl-tables/notebooks /automl_stockout_img/Image%20new%203%202019-03-25%20at%2012.49.40%20AM.png)
376+ ![ ] ( resources /automl_stockout_img/Image%20new%203%202019-03-25%20at%2012.49.40%20AM.png)
366377
367378Thus the evaluation results tell us that the model we built can:
368379
@@ -373,4 +384,4 @@ Thus the evaluation results tell us that the model we built can:
373384
374385Thus, with such a machine learning model your business could definitely expect time savings and revenue gain by predicting stock-outs.
375386
376- Note: You can always improve this model iteratively by adding business relevant features.
387+ Note: You can always improve this model iteratively by adding business relevant features.
0 commit comments