-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathclipperpweight.py
108 lines (95 loc) · 5.68 KB
/
clipperpweight.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import torch
class CLIPTextEncodePerpWeight:
@classmethod
def INPUT_TYPES(s):
return {"required": {"text": ("STRING", {"multiline": True}),
"clip": ("CLIP", ),
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "encode"
CATEGORY = "conditioning"
def encode(self, clip, text):
empty_tokens = clip.tokenize("")
sdxl_flag = "g" in empty_tokens.keys()
if sdxl_flag:
empty_cond, empty_cond_pooled = clip.encode_from_tokens(empty_tokens, return_pooled=True)
tokens = clip.tokenize(text)
unweighted_tokens = {}
unweighted_tokens["l"] = [[(t, 1.0) for t,_ in x] for x in tokens["l"]]
unweighted_tokens["g"] = [[(t, 1.0) for t,_ in x] for x in tokens["g"]]
unweighted_cond, unweighted_pooled = clip.encode_from_tokens(unweighted_tokens, return_pooled=True)
cond = torch.clone(unweighted_cond)
for i in range(unweighted_cond.shape[0]):
for j in range(unweighted_cond.shape[1]):
weight_l = tokens["l"][(j//77)][(j%77)][1]
if weight_l != 1.0:
token_vector_l = unweighted_cond[i][j][:768]
zero_vector_l = empty_cond[0][(j%77)][:768]
perp_l = ((torch.mul(zero_vector_l, token_vector_l).sum())/(torch.norm(token_vector_l)**2)) * token_vector_l
if weight_l > 1.0:
cond[i][j][:768] = token_vector_l + (weight_l * perp_l)
elif (weight_l > 0.0) and (weight_l < 1.0):
cond[i][j][:768] = zero_vector_l + (weight_l * (token_vector_l - zero_vector_l))
elif (weight_l > -1.0) and (weight_l < 0.0):
cond[i][j][:768] = -1 * (zero_vector_l + (abs(weight_l) * (token_vector_l - zero_vector_l)))
elif weight_l == -1.0:
cond[i][j][:768] = -1 * token_vector_l
elif weight_l < -1.0:
cond[i][j][:768] = -1 * (token_vector_l + (abs(weight_l) * perp_l))
elif weight_l == 0.0:
cond[i][j][:768] = empty_cond[0][(j%77)][:768]
weight_g = tokens["g"][(j//77)][(j%77)][1]
if weight_g != 1.0:
token_vector_g = unweighted_cond[i][j][768:]
zero_vector_g = empty_cond[0][(j%77)][768:]
perp_g = ((torch.mul(zero_vector_g, token_vector_g).sum())/(torch.norm(token_vector_g)**2)) * token_vector_g
if weight_g > 1.0:
cond[i][j][768:] = token_vector_g + (weight_g * perp_g)
elif (weight_g > 0.0) and (weight_g < 1.0):
cond[i][j][768:] = weight_g * token_vector_g
elif (weight_g > -1.0) and (weight_g < 0.0):
cond[i][j][768:] = -1 * (zero_vector_g + (abs(weight_g) * (token_vector_g - zero_vector_g)))
elif weight_g == -1.0:
cond[i][j][768:] = -1 * token_vector_g
elif weight_g < -1.0:
cond[i][j][768:] = -1 * (token_vector_g + (abs(weight_g) * perp_g))
elif weight_g == 0.0:
cond[i][j][768:] = empty_cond[0][(j%77)][768:]
else:
empty_cond, empty_cond_pooled = clip.encode_from_tokens(empty_tokens, return_pooled=True)
tokens = clip.tokenize(text)
unweighted_tokens = {}
if "h" in empty_tokens.keys():
unweighted_tokens["h"] = [[(t, 1.0) for t,_ in x] for x in tokens["h"]]
clip_name = "h"
else:
unweighted_tokens["l"] = [[(t, 1.0) for t,_ in x] for x in tokens["l"]]
clip_name = "l"
unweighted_cond, unweighted_pooled = clip.encode_from_tokens(unweighted_tokens, return_pooled=True)
cond = torch.clone(unweighted_cond)
for i in range(unweighted_cond.shape[0]):
for j in range(unweighted_cond.shape[1]):
weight = tokens[clip_name][(j//77)][(j%77)][1]
if weight != 1.0:
token_vector = unweighted_cond[i][j]
zero_vector = empty_cond[0][(j%77)]
perp = ((torch.mul(zero_vector, token_vector).sum())/(torch.norm(token_vector)**2)) * token_vector
if weight > 1.0:
cond[i][j] = token_vector + (weight * perp)
elif (weight > 0.0) and (weight < 1.0):
cond[i][j] = weight * token_vector
elif (weight > -1.0) and (weight < 0.0):
cond[i][j] = -1 * (zero_vector + (abs(weight) * (token_vector - zero_vector)))
elif weight == -1.0:
cond[i][j] = -1 * token_vector
elif weight < -1.0:
cond[i][j] = -1 * (token_vector + (abs(weight) * perp))
elif weight == 0.0:
cond[i][j] = empty_cond[0][(j%77)]
return ([[cond, {"pooled_output": unweighted_pooled}]], )
NODE_CLASS_MAPPINGS = {
"CLIPTextEncodePerpWeight": CLIPTextEncodePerpWeight,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"CLIPTextEncodePerpWeight": "CLIP Text Encode (Perp-Weight)",
}