forked from lh3/minimap2
-
Notifications
You must be signed in to change notification settings - Fork 8
/
index.c
1029 lines (937 loc) · 27.7 KB
/
index.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* The MIT License
Copyright (c) 2018- Dana-Farber Cancer Institute
2017-2018 Broad Institute, Inc.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
Modified Copyright (C) 2021 Intel Corporation
Contacts: Saurabh Kalikar <saurabh.kalikar@intel.com>;
Vasimuddin Md <vasimuddin.md@intel.com>; Sanchit Misra <sanchit.misra@intel.com>;
Chirag Jain <chirag@iisc.ac.in>; Heng Li <hli@jimmy.harvard.edu>
*/
#include <stdlib.h>
#include <assert.h>
#if defined(WIN32) || defined(_WIN32)
#include <io.h> // for open(2)
#else
#include <unistd.h>
#endif
#include <fcntl.h>
#include <stdio.h>
#define __STDC_LIMIT_MACROS
#include "kthread.h"
#include "bseq.h"
#include "minimap.h"
#include "mmpriv.h"
#include "kvec.h"
#include "khash.h"
#include <map>
#include <fstream>
#include <vector>
#include <algorithm>
#include <x86intrin.h>
using namespace std;
//klocwork fix
#define validate_int(x) (assert(INT_MIN <= x && x <= INT_MAX));
#define validate_uint(x) (assert(0 <= x && x <= UINT_MAX));
#define validate_ulong(x) (assert(0 <= x && x <= ULONG_MAX));
extern uint64_t minimizer_lookup_time, alignment_time, dp_time, rmq_time, rmq_t1, rmq_t2, rmq_t3, rmq_t4;
#ifdef LISA_HASH
#include "lisa_hash.h"
extern lisa_hash<uint64_t, uint64_t> *lh;
#endif
#define idx_hash(a) ((a)>>1)
#define idx_eq(a, b) ((a)>>1 == (b)>>1)
KHASH_INIT(idx, uint64_t, uint64_t, 1, idx_hash, idx_eq)
typedef khash_t(idx) idxhash_t;
KHASH_MAP_INIT_STR(str, uint32_t)
#define kroundup64(x) (--(x), (x)|=(x)>>1, (x)|=(x)>>2, (x)|=(x)>>4, (x)|=(x)>>8, (x)|=(x)>>16, (x)|=(x)>>32, ++(x))
typedef struct mm_idx_bucket_s {
mm128_v a; // (minimizer, position) array
int32_t n; // size of the _p_ array
uint64_t *p; // position array for minimizers appearing >1 times
void *h; // hash table indexing _p_ and minimizers appearing once
} mm_idx_bucket_t;
typedef struct {
int32_t st, en, max; // max is not used for now
int32_t score:30, strand:2;
} mm_idx_intv1_t;
typedef struct mm_idx_intv_s {
int32_t n, m;
mm_idx_intv1_t *a;
} mm_idx_intv_t;
mm_idx_t *mm_idx_init(int w, int k, int b, int flag)
{
mm_idx_t *mi;
if (k*2 < b) b = k * 2;
if (w < 1) w = 1;
mi = (mm_idx_t*)calloc(1, sizeof(mm_idx_t));
mi->w = w, mi->k = k, mi->b = b, mi->flag = flag;
mi->B = (mm_idx_bucket_t*)calloc(1<<b, sizeof(mm_idx_bucket_t));
if (!(mm_dbg_flag & 1)) mi->km = km_init();
return mi;
}
void mm_idx_destroy_mm_hash(mm_idx_t *mi)
{
//fprintf(stderr, "mm_destroy_hash\n");
uint32_t i;
if (mi == 0) return;
if (mi->h) kh_destroy(str, (khash_t(str)*)mi->h);
if (mi->B) {
for (i = 0; i < 1U<<mi->b; ++i) {
free(mi->B[i].p);
free(mi->B[i].a.a);
kh_destroy(idx, (idxhash_t*)mi->B[i].h);
}
}
}
void mm_idx_destroy_seq(mm_idx_t *mi)
{
//fprintf(stderr, "mm_destroy_seq\n");
uint32_t i;
if (mi == 0) return;
if (mi->I) {
for (i = 0; i < mi->n_seq; ++i)
free(mi->I[i].a);
free(mi->I);
}
if (!mi->km) {
for (i = 0; i < mi->n_seq; ++i)
free(mi->seq[i].name);
free(mi->seq);
} else km_destroy(mi->km);
free(mi->B); free(mi->S); free(mi);
}
void mm_idx_destroy(mm_idx_t *mi)
{
uint32_t i;
if (mi == 0) return;
if (mi->h) kh_destroy(str, (khash_t(str)*)mi->h);
if (mi->B) {
for (i = 0; i < 1U<<mi->b; ++i) {
free(mi->B[i].p);
free(mi->B[i].a.a);
kh_destroy(idx, (idxhash_t*)mi->B[i].h);
}
}
if (mi->I) {
for (i = 0; i < mi->n_seq; ++i)
free(mi->I[i].a);
free(mi->I);
}
if (!mi->km) {
for (i = 0; i < mi->n_seq; ++i)
free(mi->seq[i].name);
free(mi->seq);
} else km_destroy(mi->km);
free(mi->B); free(mi->S); free(mi);
}
const uint64_t *mm_idx_get(const mm_idx_t *mi, uint64_t minier, int *n)
{
int mask = (1<<mi->b) - 1;
khint_t k;
mm_idx_bucket_t *b = &mi->B[minier&mask];
idxhash_t *h = (idxhash_t*)b->h;
*n = 0;
if (h == 0) return 0;
k = kh_get(idx, h, minier>>mi->b<<1);
if (k == kh_end(h)) return 0;
if (kh_key(h, k)&1) { // special casing when there is only one k-mer
*n = 1;
return &kh_val(h, k);
} else {
*n = (uint32_t)kh_val(h, k);
return &b->p[kh_val(h, k)>>32];
}
}
//Output minimap2's hash table entries
class hash_entry {
public:
uint64_t key;
uint64_t n;
uint64_t *p;
hash_entry(uint64_t k, uint64_t n_, uint64_t *p_){
key = k;
n = n_;
p = p_;
}
};
bool key_sort( hash_entry i1, hash_entry i2)
{
return (i1.key < i2.key);
}
void mm_idx_dump_hash(const char* f_name, const mm_idx_t *mi)
{
uint64_t tic = __rdtsc();
//std::map<uint64_t, vector<uint64_t>> m;
std::vector<hash_entry> v_hash;
//ofstream f(f_name);
fprintf(stderr, "Building sorted key-val map\n");
uint32_t i,j;
uint64_t num_values = 0;
for (i = 0; i < 1U<<mi->b; ++i) {
//fprintf(stderr, "BucketID %lu \n", i);
idxhash_t *h = (idxhash_t*)mi->B[i].h;
khint_t k;
if (h == 0) continue;
for (k = 0; k < kh_end(h); ++k){
if (kh_exist(h, k)) {
uint64_t key = kh_key(h, k), bucket_id = i;
key = key>>1;
key = key<<mi->b | bucket_id;
if(kh_key(h, k)&1)
{
//print key value
//fprintf(stderr, "%llu %llu %llu\n", key, kh_val(h, k), 0);
//m[key].push_back(kh_val(h, k));
v_hash.push_back(hash_entry(key, kh_val(h, k), NULL));
}
else
{ // print key
uint32_t n = (uint32_t)kh_val(h, k);
//fprintf(stderr, "%llu %llu %llu ", key, kh_val(h, k), n);
// for 0 to lsb 32 val
// print b->p[msb 32 of val]
v_hash.push_back(hash_entry(key, n, &mi->B[i].p[(kh_val(h, k)>>32) + 0]));
}
}
}
}
sort(v_hash.begin(), v_hash.end(), key_sort);
fprintf(stderr, "Sorted map building time = %lld \n", __rdtsc() - tic);
fprintf(stderr, "Storing hash to %s \n", f_name);
tic = __rdtsc();
vector<uint64_t> key_list;
vector<uint64_t> val_list;
vector<uint64_t> p_list;
/*
key_list.push_back(m.size());
for(auto k : m){
key_list.push_back(k.first);
f<<k.first << " "<<k.second.size()<<endl;
for(int j = 0; j < k.second.size(); j++){
f<<k.second[j]<<" ";
num_values++;
}
f<<endl;
}
*/
key_list.push_back(v_hash.size());
int64_t itr_p = 0;
uint64_t sum_pos = 0;
string f1_name = (string)f_name + "_pos_bin";
string f2_name = (string)f_name + "_val_bin";
ofstream f1(f1_name, ios::out | ios::binary);
ofstream f2(f2_name, ios::out | ios::binary);
for( int i = 0; i < v_hash.size(); i++){
key_list.push_back(v_hash[i].key);
if(v_hash[i].p == NULL){
//f<<v_hash[i].key << " "<<1<<"\n"<<v_hash[i].n<<" \n";
val_list.push_back(sum_pos<<32|(uint64_t)1);
sum_pos+=1;
p_list.push_back(v_hash[i].n);
num_values++;
continue;
}
//f<<v_hash[i].key << " "<<v_hash[i].n<<endl;
val_list.push_back(sum_pos<<32|(uint64_t)v_hash[i].n);
sum_pos+=v_hash[i].n;
num_values+=v_hash[i].n;
for(int j = 0; j < v_hash[i].n; j++){
//f<<v_hash[i].p[j]<<" ";
p_list.push_back(v_hash[i].p[j]);
}
// f<<endl;
}
f1.write((char*)&val_list[0], (val_list.size())*sizeof(uint64_t));
f2.write((char*)&p_list[0], (p_list.size())*sizeof(uint64_t));
f1.close();
f2.close();
fprintf(stderr, "Index sorted SoA time %lld \n", __rdtsc() - tic);
//f.close();
string size_file_name = (string) f_name + "_size";
ofstream size_f(size_file_name);
size_f<<v_hash.size()<<" "<<num_values;
size_f.close();
string prefix = (string)f_name + "_keys";
string keys_bin_file_name = prefix + ".uint64";
ofstream wf(keys_bin_file_name, ios::out | ios::binary);
wf.write((char*)&key_list[0], (key_list.size())*sizeof(uint64_t));
wf.close();
key_list.clear();
//m.clear();
v_hash.clear();
fprintf(stderr, "Index store File IO time %lld \n", __rdtsc() - tic);
}
void mm_idx_stat(const mm_idx_t *mi)
{
int n = 0, n1 = 0;
uint32_t i;
uint64_t sum = 0, len = 0;
fprintf(stderr, "[M::%s] kmer size: %d; skip: %d; is_hpc: %d; #seq: %d\n", __func__, mi->k, mi->w, mi->flag&MM_I_HPC, mi->n_seq);
for (i = 0; i < mi->n_seq; ++i)
len += mi->seq[i].len;
for (i = 0; i < 1U<<mi->b; ++i)
if (mi->B[i].h) n += kh_size((idxhash_t*)mi->B[i].h);
for (i = 0; i < 1U<<mi->b; ++i) {
idxhash_t *h = (idxhash_t*)mi->B[i].h;
khint_t k;
if (h == 0) continue;
for (k = 0; k < kh_end(h); ++k)
if (kh_exist(h, k)) {
sum += kh_key(h, k)&1? 1 : (uint32_t)kh_val(h, k);
if (kh_key(h, k)&1) ++n1;
}
}
//klocwork fix
assert(n != 0);
assert(sum != 0);
// ----
fprintf(stderr, "[M::%s::%.3f*%.2f] distinct minimizers: %d (%.2f%% are singletons); average occurrences: %.3lf; average spacing: %.3lf; total length: %ld\n",
__func__, realtime() - mm_realtime0, cputime() / (realtime() - mm_realtime0), n, 100.0*n1/n, (double)sum / n, (double)len / sum, (long)len);
fprintf(stderr, "minimizer-lookup: %lu dp: %lu rmq: %lu rmq_t1: %lu rmq_t2: %lu rmq_t3: %lu rmq_t4: %lu alignment: %lu \n", minimizer_lookup_time, dp_time, rmq_time, rmq_t1, rmq_t2, rmq_t3, rmq_t4, alignment_time);
}
int mm_idx_index_name(mm_idx_t *mi)
{
khash_t(str) *h;
uint32_t i;
int has_dup = 0, absent;
if (mi->h) return 0;
h = kh_init(str);
for (i = 0; i < mi->n_seq; ++i) {
khint_t k;
k = kh_put(str, h, mi->seq[i].name, &absent);
if (absent) kh_val(h, k) = i;
else has_dup = 1;
}
mi->h = h;
if (has_dup && mm_verbose >= 2)
fprintf(stderr, "[WARNING] some database sequences have identical sequence names\n");
return has_dup;
}
int mm_idx_name2id(const mm_idx_t *mi, const char *name)
{
khash_t(str) *h = (khash_t(str)*)mi->h;
khint_t k;
if (h == 0) return -2;
k = kh_get(str, h, name);
return k == kh_end(h)? -1 : kh_val(h, k);
}
int mm_idx_getseq(const mm_idx_t *mi, uint32_t rid, uint32_t st, uint32_t en, uint8_t *seq)
{
uint64_t i, st1, en1;
if (rid >= mi->n_seq || st >= mi->seq[rid].len) return -1;
if (en > mi->seq[rid].len) en = mi->seq[rid].len;
st1 = mi->seq[rid].offset + st;
en1 = mi->seq[rid].offset + en;
for (i = st1; i < en1; ++i)
seq[i - st1] = mm_seq4_get(mi->S, i);
return en - st;
}
int mm_idx_getseq_rev(const mm_idx_t *mi, uint32_t rid, uint32_t st, uint32_t en, uint8_t *seq)
{
uint64_t i, st1, en1;
const mm_idx_seq_t *s;
if (rid >= mi->n_seq || st >= mi->seq[rid].len) return -1;
s = &mi->seq[rid];
if (en > s->len) en = s->len;
st1 = s->offset + (s->len - en);
en1 = s->offset + (s->len - st);
for (i = st1; i < en1; ++i) {
uint8_t c = mm_seq4_get(mi->S, i);
seq[en1 - i - 1] = c < 4? 3 - c : c;
}
return en - st;
}
int mm_idx_getseq2(const mm_idx_t *mi, int is_rev, uint32_t rid, uint32_t st, uint32_t en, uint8_t *seq)
{
if (is_rev) return mm_idx_getseq_rev(mi, rid, st, en, seq);
else return mm_idx_getseq(mi, rid, st, en, seq);
}
int32_t mm_idx_cal_max_occ(const mm_idx_t *mi, float f)
{
int i;
size_t n = 0;
uint32_t thres;
khint_t *a, k;
if (f <= 0.) return INT32_MAX;
for (i = 0; i < 1<<mi->b; ++i)
if (mi->B[i].h) n += kh_size((idxhash_t*)mi->B[i].h);
a = (uint32_t*)malloc(n * 4);
for (i = n = 0; i < 1<<mi->b; ++i) {
idxhash_t *h = (idxhash_t*)mi->B[i].h;
if (h == 0) continue;
for (k = 0; k < kh_end(h); ++k) {
if (!kh_exist(h, k)) continue;
a[n++] = kh_key(h, k)&1? 1 : (uint32_t)kh_val(h, k);
}
}
thres = ks_ksmall_uint32_t(n, a, (uint32_t)((1. - f) * n)) + 1;
free(a);
return thres;
}
/*********************************
* Sort and generate hash tables *
*********************************/
static void worker_post(void *g, long i, int tid)
{
int n, n_keys;
size_t j, start_a, start_p;
idxhash_t *h;
mm_idx_t *mi = (mm_idx_t*)g;
mm_idx_bucket_t *b = &mi->B[i];
if (b->a.n == 0) return;
// sort by minimizer
radix_sort_128x(b->a.a, b->a.a + b->a.n);
// count and preallocate
for (j = 1, n = 1, n_keys = 0, b->n = 0; j <= b->a.n; ++j) {
if (j == b->a.n || b->a.a[j].x>>8 != b->a.a[j-1].x>>8) {
++n_keys;
if (n > 1) b->n += n;
n = 1;
} else ++n;
}
h = kh_init(idx);
kh_resize(idx, h, n_keys);
b->p = (uint64_t*)calloc(b->n, 8);
// create the hash table
for (j = 1, n = 1, start_a = start_p = 0; j <= b->a.n; ++j) {
if (j == b->a.n || b->a.a[j].x>>8 != b->a.a[j-1].x>>8) {
khint_t itr;
int absent;
mm128_t *p = &b->a.a[j-1];
itr = kh_put(idx, h, p->x>>8>>mi->b<<1, &absent);
assert(absent && j == start_a + n);
if (n == 1) {
kh_key(h, itr) |= 1;
kh_val(h, itr) = p->y;
} else {
int k;
for (k = 0; k < n; ++k)
b->p[start_p + k] = b->a.a[start_a + k].y;
radix_sort_64(&b->p[start_p], &b->p[start_p + n]); // sort by position; needed as in-place radix_sort_128x() is not stable
kh_val(h, itr) = (uint64_t)start_p<<32 | n;
start_p += n;
}
start_a = j, n = 1;
} else ++n;
}
b->h = h;
assert(b->n == (int32_t)start_p);
// deallocate and clear b->a
kfree(0, b->a.a);
b->a.n = b->a.m = 0, b->a.a = 0;
}
static void mm_idx_post(mm_idx_t *mi, int n_threads)
{
kt_for(n_threads, worker_post, mi, 1<<mi->b);
}
/******************
* Generate index *
******************/
#include <string.h>
#include <zlib.h>
#include "bseq.h"
typedef struct {
int mini_batch_size;
uint64_t batch_size, sum_len;
mm_bseq_file_t *fp;
mm_idx_t *mi;
} pipeline_t;
typedef struct {
int n_seq;
mm_bseq1_t *seq;
mm128_v a;
} step_t;
static void mm_idx_add(mm_idx_t *mi, int n, const mm128_t *a)
{
int i, mask = (1<<mi->b) - 1;
for (i = 0; i < n; ++i) {
mm128_v *p = &mi->B[a[i].x>>8&mask].a;
kv_push(mm128_t, 0, *p, a[i]);
}
}
static void *worker_pipeline(void *shared, int step, void *in)
{
int i;
pipeline_t *p = (pipeline_t*)shared;
if (step == 0) { // step 0: read sequences
step_t *s;
if (p->sum_len > p->batch_size) return 0;
s = (step_t*)calloc(1, sizeof(step_t));
s->seq = mm_bseq_read(p->fp, p->mini_batch_size, 0, &s->n_seq); // read a mini-batch
if (s->seq) {
uint32_t old_m, m;
assert((uint64_t)p->mi->n_seq + s->n_seq <= UINT32_MAX); // to prevent integer overflow
// make room for p->mi->seq
old_m = p->mi->n_seq, m = p->mi->n_seq + s->n_seq;
kroundup32(m); kroundup32(old_m);
if (old_m != m)
p->mi->seq = (mm_idx_seq_t*)krealloc(p->mi->km, p->mi->seq, m * sizeof(mm_idx_seq_t));
// make room for p->mi->S
if (!(p->mi->flag & MM_I_NO_SEQ)) {
uint64_t sum_len, old_max_len, max_len;
for (i = 0, sum_len = 0; i < s->n_seq; ++i) sum_len += s->seq[i].l_seq;
old_max_len = (p->sum_len + 7) / 8;
max_len = (p->sum_len + sum_len + 7) / 8;
kroundup64(old_max_len); kroundup64(max_len);
if (old_max_len != max_len) {
p->mi->S = (uint32_t*)realloc(p->mi->S, max_len * 4);
//klocwork fix
assert(p->mi->S != NULL);
memset(&p->mi->S[old_max_len], 0, 4 * (max_len - old_max_len));
}
}
// populate p->mi->seq
for (i = 0; i < s->n_seq; ++i) {
mm_idx_seq_t *seq = &p->mi->seq[p->mi->n_seq];
uint32_t j;
if (!(p->mi->flag & MM_I_NO_NAME)) {
seq->name = (char*)kmalloc(p->mi->km, strlen(s->seq[i].name) + 1);
strcpy(seq->name, s->seq[i].name);
} else seq->name = 0;
seq->len = s->seq[i].l_seq;
seq->offset = p->sum_len;
seq->is_alt = 0;
// copy the sequence
if (!(p->mi->flag & MM_I_NO_SEQ)) {
for (j = 0; j < seq->len; ++j) { // TODO: this is not the fastest way, but let's first see if speed matters here
uint64_t o = p->sum_len + j;
int c = seq_nt4_table[(uint8_t)s->seq[i].seq[j]];
mm_seq4_set(p->mi->S, o, c);
}
}
// update p->sum_len and p->mi->n_seq
p->sum_len += seq->len;
s->seq[i].rid = p->mi->n_seq++;
}
return s;
} else free(s);
} else if (step == 1) { // step 1: compute sketch
step_t *s = (step_t*)in;
for (i = 0; i < s->n_seq; ++i) {
mm_bseq1_t *t = &s->seq[i];
if (t->l_seq > 0)
mm_sketch(0, t->seq, t->l_seq, p->mi->w, p->mi->k, t->rid, p->mi->flag&MM_I_HPC, &s->a);
else if (mm_verbose >= 2)
fprintf(stderr, "[WARNING] the length database sequence '%s' is 0\n", t->name);
free(t->seq); free(t->name);
}
free(s->seq); s->seq = 0;
return s;
} else if (step == 2) { // dispatch sketch to buckets
step_t *s = (step_t*)in;
mm_idx_add(p->mi, s->a.n, s->a.a);
kfree(0, s->a.a); free(s);
}
return 0;
}
mm_idx_t *mm_idx_gen(mm_bseq_file_t *fp, int w, int k, int b, int flag, int mini_batch_size, int n_threads, uint64_t batch_size)
{
pipeline_t pl;
if (fp == 0 || mm_bseq_eof(fp)) return 0;
memset(&pl, 0, sizeof(pipeline_t));
pl.mini_batch_size = (uint64_t)mini_batch_size < batch_size? mini_batch_size : batch_size;
pl.batch_size = batch_size;
pl.fp = fp;
pl.mi = mm_idx_init(w, k, b, flag);
kt_pipeline(n_threads < 3? n_threads : 3, worker_pipeline, &pl, 3);
if (mm_verbose >= 3)
fprintf(stderr, "[M::%s::%.3f*%.2f] collected minimizers\n", __func__, realtime() - mm_realtime0, cputime() / (realtime() - mm_realtime0));
mm_idx_post(pl.mi, n_threads);
if (mm_verbose >= 3)
fprintf(stderr, "[M::%s::%.3f*%.2f] sorted minimizers\n", __func__, realtime() - mm_realtime0, cputime() / (realtime() - mm_realtime0));
return pl.mi;
}
mm_idx_t *mm_idx_build(const char *fn, int w, int k, int flag, int n_threads) // a simpler interface; deprecated
{
mm_bseq_file_t *fp;
mm_idx_t *mi;
fp = mm_bseq_open(fn);
if (fp == 0) return 0;
mi = mm_idx_gen(fp, w, k, 14, flag, 1<<18, n_threads, UINT64_MAX);
mm_bseq_close(fp);
return mi;
}
mm_idx_t *mm_idx_str(int w, int k, int is_hpc, int bucket_bits, int n, const char **seq, const char **name)
{
uint64_t sum_len = 0;
mm128_v a = {0,0,0};
mm_idx_t *mi;
khash_t(str) *h;
int i, flag = 0;
if (n <= 0) return 0;
for (i = 0; i < n; ++i) // get the total length
sum_len += strlen(seq[i]);
if (is_hpc) flag |= MM_I_HPC;
if (name == 0) flag |= MM_I_NO_NAME;
if (bucket_bits < 0) bucket_bits = 14;
mi = mm_idx_init(w, k, bucket_bits, flag);
mi->n_seq = n;
mi->seq = (mm_idx_seq_t*)kcalloc(mi->km, n, sizeof(mm_idx_seq_t)); // ->seq is allocated from km
mi->S = (uint32_t*)calloc((sum_len + 7) / 8, 4);
mi->h = h = kh_init(str);
for (i = 0, sum_len = 0; i < n; ++i) {
const char *s = seq[i];
mm_idx_seq_t *p = &mi->seq[i];
uint32_t j;
if (name && name[i]) {
int absent;
p->name = (char*)kmalloc(mi->km, strlen(name[i]) + 1);
strcpy(p->name, name[i]);
kh_put(str, h, p->name, &absent);
assert(absent);
}
p->offset = sum_len;
p->len = strlen(s);
p->is_alt = 0;
for (j = 0; j < p->len; ++j) {
int c = seq_nt4_table[(uint8_t)s[j]];
uint64_t o = sum_len + j;
mm_seq4_set(mi->S, o, c);
}
sum_len += p->len;
if (p->len > 0) {
a.n = 0;
mm_sketch(0, s, p->len, w, k, i, is_hpc, &a);
mm_idx_add(mi, a.n, a.a);
}
}
free(a.a);
mm_idx_post(mi, 1);
return mi;
}
/*************
* index I/O *
*************/
void mm_idx_dump(FILE *fp, const mm_idx_t *mi)
{
uint64_t sum_len = 0;
uint32_t x[5], i;
x[0] = mi->w, x[1] = mi->k, x[2] = mi->b, x[3] = mi->n_seq, x[4] = mi->flag;
fwrite(MM_IDX_MAGIC, 1, 4, fp);
fwrite(x, 4, 5, fp);
for (i = 0; i < mi->n_seq; ++i) {
if (mi->seq[i].name) {
uint8_t l = strlen(mi->seq[i].name);
fwrite(&l, 1, 1, fp);
fwrite(mi->seq[i].name, 1, l, fp);
} else {
uint8_t l = 0;
fwrite(&l, 1, 1, fp);
}
fwrite(&mi->seq[i].len, 4, 1, fp);
sum_len += mi->seq[i].len;
}
for (i = 0; i < 1<<mi->b; ++i) {
mm_idx_bucket_t *b = &mi->B[i];
khint_t k;
idxhash_t *h = (idxhash_t*)b->h;
uint32_t size = h? h->size : 0;
fwrite(&b->n, 4, 1, fp);
fwrite(b->p, 8, b->n, fp);
fwrite(&size, 4, 1, fp);
if (size == 0) continue;
for (k = 0; k < kh_end(h); ++k) {
uint64_t x[2];
if (!kh_exist(h, k)) continue;
x[0] = kh_key(h, k), x[1] = kh_val(h, k);
fwrite(x, 8, 2, fp);
}
}
if (!(mi->flag & MM_I_NO_SEQ))
fwrite(mi->S, 4, (sum_len + 7) / 8, fp);
fflush(fp);
}
mm_idx_t *mm_idx_load(FILE *fp)
{
char magic[4];
uint32_t x[5], i;
uint64_t sum_len = 0;
mm_idx_t *mi;
if (fread(magic, 1, 4, fp) != 4) return 0;
if (strncmp(magic, MM_IDX_MAGIC, 4) != 0) return 0;
if (fread(x, 4, 5, fp) != 5) return 0;
mi = mm_idx_init(x[0], x[1], x[2], x[4]);
mi->n_seq = x[3];
mi->seq = (mm_idx_seq_t*)kcalloc(mi->km, mi->n_seq, sizeof(mm_idx_seq_t));
for (i = 0; i < mi->n_seq; ++i) {
uint8_t l;
mm_idx_seq_t *s = &mi->seq[i];
fread(&l, 1, 1, fp);
//klocwork fix
assert(l >=0 && l <= 255);
if (l) {
s->name = (char*)kmalloc(mi->km, l + 1);
fread(s->name, 1, l, fp);
s->name[l] = 0;
}
fread(&s->len, 4, 1, fp);
//klocwork fix
validate_uint(s->len)
s->offset = sum_len;
s->is_alt = 0;
sum_len += s->len;
}
for (i = 0; i < 1<<mi->b; ++i) {
mm_idx_bucket_t *b = &mi->B[i];
uint32_t j, size;
khint_t k;
idxhash_t *h;
fread(&b->n, 4, 1, fp);
//klocwork fix
validate_ulong(b->n)
b->p = (uint64_t*)malloc(b->n * 8);
fread(b->p, 8, b->n, fp);
fread(&size, 4, 1, fp);
//klocwork fix
//assert(0 <= size && size <= UINT_MAX);
validate_uint(size)
if (size == 0) continue;
b->h = h = kh_init(idx);
kh_resize(idx, h, size);
for (j = 0; j < size; ++j) {
uint64_t x[2];
int absent;
fread(x, 8, 2, fp);
k = kh_put(idx, h, x[0], &absent);
assert(absent);
kh_val(h, k) = x[1];
}
}
if (!(mi->flag & MM_I_NO_SEQ)) {
mi->S = (uint32_t*)malloc((sum_len + 7) / 8 * 4);
fread(mi->S, 4, (sum_len + 7) / 8, fp);
}
return mi;
}
int64_t mm_idx_is_idx(const char *fn)
{
int fd, is_idx = 0;
int64_t ret, off_end;
char magic[4];
if (strcmp(fn, "-") == 0) return 0; // read from pipe; not an index
fd = open(fn, O_RDONLY);
if (fd < 0) return -1; // error
#ifdef WIN32
if ((off_end = _lseeki64(fd, 0, SEEK_END)) >= 4) {
_lseeki64(fd, 0, SEEK_SET);
#else
if ((off_end = lseek(fd, 0, SEEK_END)) >= 4) {
lseek(fd, 0, SEEK_SET);
#endif // WIN32
ret = read(fd, magic, 4);
if (ret == 4 && strncmp(magic, MM_IDX_MAGIC, 4) == 0)
is_idx = 1;
}
close(fd);
return is_idx? off_end : 0;
}
mm_idx_reader_t *mm_idx_reader_open(const char *fn, const mm_idxopt_t *opt, const char *fn_out)
{
int64_t is_idx;
mm_idx_reader_t *r;
is_idx = mm_idx_is_idx(fn);
if (is_idx < 0) return 0; // failed to open the index
r = (mm_idx_reader_t*)calloc(1, sizeof(mm_idx_reader_t));
r->is_idx = is_idx;
if (opt) r->opt = *opt;
else mm_idxopt_init(&r->opt);
if (r->is_idx) {
r->fp.idx = fopen(fn, "rb");
r->idx_size = is_idx;
} else r->fp.seq = mm_bseq_open(fn);
if (fn_out) r->fp_out = fopen(fn_out, "wb");
return r;
}
void mm_idx_reader_close(mm_idx_reader_t *r)
{
if (r->is_idx) fclose(r->fp.idx);
else mm_bseq_close(r->fp.seq);
if (r->fp_out) fclose(r->fp_out);
free(r);
}
mm_idx_t *mm_idx_reader_read(mm_idx_reader_t *r, int n_threads)
{
mm_idx_t *mi;
if (r->is_idx) {
mi = mm_idx_load(r->fp.idx);
if (mi && mm_verbose >= 2 && (mi->k != r->opt.k || mi->w != r->opt.w || (mi->flag&MM_I_HPC) != (r->opt.flag&MM_I_HPC)))
fprintf(stderr, "[WARNING]\033[1;31m Indexing parameters (-k, -w or -H) overridden by parameters used in the prebuilt index.\033[0m\n");
} else
mi = mm_idx_gen(r->fp.seq, r->opt.w, r->opt.k, r->opt.bucket_bits, r->opt.flag, r->opt.mini_batch_size, n_threads, r->opt.batch_size);
if (mi) {
if (r->fp_out) mm_idx_dump(r->fp_out, mi);
mi->index = r->n_parts++;
}
return mi;
}
int mm_idx_reader_eof(const mm_idx_reader_t *r) // TODO: in extremely rare cases, mm_bseq_eof() might not work
{
return r->is_idx? (feof(r->fp.idx) || ftell(r->fp.idx) == r->idx_size) : mm_bseq_eof(r->fp.seq);
}
#include <ctype.h>
#include <zlib.h>
#include "ksort.h"
#include "kseq.h"
KSTREAM_DECLARE(gzFile, gzread)
int mm_idx_alt_read(mm_idx_t *mi, const char *fn)
{
int n_alt = 0;
gzFile fp;
kstream_t *ks;
kstring_t str = {0,0,0};
fp = fn && strcmp(fn, "-")? gzopen(fn, "r") : gzdopen(fileno(stdin), "r");
if (fp == 0) return -1;
ks = ks_init(fp);
if (mi->h == 0) mm_idx_index_name(mi);
while (ks_getuntil(ks, KS_SEP_LINE, &str, 0) >= 0) {
char *p;
int id;
for (p = str.s; *p && !isspace(*p); ++p) { }
*p = 0;
id = mm_idx_name2id(mi, str.s);
if (id >= 0) mi->seq[id].is_alt = 1, ++n_alt;
}
mi->n_alt = n_alt;
if (mm_verbose >= 3)
fprintf(stderr, "[M::%s] found %d ALT contigs\n", __func__, n_alt);
return n_alt;
}
#define sort_key_bed(a) ((a).st)
KRADIX_SORT_INIT(bed, mm_idx_intv1_t, sort_key_bed, 4)
mm_idx_intv_t *mm_idx_read_bed(const mm_idx_t *mi, const char *fn, int read_junc)
{
gzFile fp;
kstream_t *ks;
kstring_t str = {0,0,0};
mm_idx_intv_t *I;
fp = fn && strcmp(fn, "-")? gzopen(fn, "r") : gzdopen(fileno(stdin), "r");
if (fp == 0) return 0;
I = (mm_idx_intv_t*)calloc(mi->n_seq, sizeof(*I));
ks = ks_init(fp);
while (ks_getuntil(ks, KS_SEP_LINE, &str, 0) >= 0) {
mm_idx_intv_t *r;
mm_idx_intv1_t t = {-1,-1,-1,-1,0};
char *p, *q, *bl, *bs;
int32_t i, id = -1, n_blk = 0;
for (p = q = str.s, i = 0;; ++p) {
if (*p == 0 || *p == '\t') {
int32_t c = *p;
*p = 0;
if (i == 0) { // chr
id = mm_idx_name2id(mi, q);
if (id < 0) break; // unknown name; TODO: throw a warning
} else if (i == 1) { // start
t.st = atol(q); // TODO: watch out integer overflow!
if (t.st < 0) break;
} else if (i == 2) { // end
t.en = atol(q);
if (t.en < 0) break;
} else if (i == 4) { // BED score
t.score = atol(q);
} else if (i == 5) { // strand
t.strand = *q == '+'? 1 : *q == '-'? -1 : 0;
} else if (i == 9) {
if (!isdigit(*q)) break;
n_blk = atol(q);
} else if (i == 10) {
bl = q;
} else if (i == 11) {
bs = q;
break;
}
if (c == 0) break;
++i, q = p + 1;
}
}
if (id < 0 || t.st < 0 || t.st >= t.en) continue;
r = &I[id];
if (i >= 11 && read_junc) { // BED12
int32_t st = 0, sz = 0, en = 0;
st = strtol(bs, &bs, 10); ++bs;
sz = strtol(bl, &bl, 10); ++bl;
//klocwork fix
validate_int(st)
validate_int(sz)
en = t.st + st + sz;
//klocwork fix
assert(INT_MIN <= n_blk && n_blk <= INT_MAX);
for (i = 1; i < n_blk; ++i) {
mm_idx_intv1_t s = t;
if (r->n == r->m) {
r->m = r->m? r->m + (r->m>>1) : 16;
r->a = (mm_idx_intv1_t*)realloc(r->a, sizeof(*r->a) * r->m);
assert(r->a != NULL);
}
st = strtol(bs, &bs, 10); ++bs;
sz = strtol(bl, &bl, 10); ++bl;
//klocwork fix
validate_int(st)
validate_int(sz)
s.st = en, s.en = t.st + st;
en = t.st + st + sz;
if (s.en > s.st) r->a[r->n++] = s;
}
} else {
if (r->n == r->m) {
r->m = r->m? r->m + (r->m>>1) : 16;
r->a = (mm_idx_intv1_t*)realloc(r->a, sizeof(*r->a) * r->m);
assert(r->a != NULL);
}
r->a[r->n++] = t;
}
}
free(str.s);
ks_destroy(ks);
gzclose(fp);
return I;
}
int mm_idx_bed_read(mm_idx_t *mi, const char *fn, int read_junc)
{
int32_t i;
if (mi->h == 0) mm_idx_index_name(mi);
mi->I = mm_idx_read_bed(mi, fn, read_junc);
if (mi->I == 0) return -1;