-
Notifications
You must be signed in to change notification settings - Fork 11
/
generate.py
94 lines (75 loc) · 3.42 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import argparse
from pathlib import Path
import numpy as np
import torch
from omegaconf import OmegaConf
from skimage.io import imsave
from ldm.models.diffusion.sync_dreamer import SyncMultiviewDiffusion, SyncDDIMSampler
from ldm.util import instantiate_from_config, prepare_inputs
def load_model(cfg,ckpt,strict=True):
config = OmegaConf.load(cfg)
model = instantiate_from_config(config.model)
print(f'loading model from {ckpt} ...')
ckpt = torch.load(ckpt,map_location='cpu')
model.load_state_dict(ckpt['state_dict'],strict=strict)
model = model.cuda().eval()
return model
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--cfg',type=str, default='configs/syncdreamer.yaml')
parser.add_argument('--ckpt',type=str, default='ckpt/syncdreamer-pretrain.ckpt')
parser.add_argument('--output', type=str, required=True)
parser.add_argument('--input', type=str, required=True)
parser.add_argument('--elevation', type=float, required=True)
parser.add_argument('--sample_num', type=int, default=2)
parser.add_argument('--crop_size', type=int, default=-1)
parser.add_argument('--cfg_scales', type=float, nargs='+', default=[1.0, 1.0])
parser.add_argument('--decomposed_sampling', action='store_true')
parser.add_argument('--seed', type=int, default=6033)
parser.add_argument('--sampler', type=str, default='ddim')
parser.add_argument('--sample_steps', type=int, default=50)
flags = parser.parse_args()
torch.random.manual_seed(flags.seed)
np.random.seed(flags.seed)
model = load_model(flags.cfg, flags.ckpt, strict=False)
assert isinstance(model, SyncMultiviewDiffusion)
Path(f'{flags.output}').mkdir(exist_ok=True, parents=True)
# prepare data
data = prepare_inputs(flags.input, flags.elevation, flags.crop_size)
for k, v in data.items():
data[k] = v.unsqueeze(0).cuda()
data[k] = torch.repeat_interleave(data[k], flags.sample_num, dim=0)
if flags.sampler=='ddim':
sampler = SyncDDIMSampler(model, flags.sample_steps)
else:
raise NotImplementedError
if flags.decomposed_sampling:
mode = 'DG'
print("Decomposed Guidance (DG) Sampling")
print(f"unconditional scales {flags.cfg_scales}")
else:
mode = 'CFG'
print("Classifier-Free Guidance (CFG) Sampling")
print(f"unconditional scale {flags.cfg_scales[0]:.1f}")
if flags.decomposed_sampling:
x_sample = model.sample(sampler, data, flags.cfg_scales)
else:
x_sample = model.sample(sampler, data, flags.cfg_scales[0])
B, N, _, H, W = x_sample.shape
x_sample = (torch.clamp(x_sample, max=1.0, min=-1.0) + 1) * 0.5
x_sample = x_sample.permute(0, 1, 3, 4, 2).cpu().numpy() * 255
x_sample = x_sample.astype(np.uint8)
save_fig = []
for bi in range(B):
tmp_img = np.concatenate([x_sample[bi, ni] for ni in range(N)], 1)
output_fn = Path(flags.output) / f'{bi}.png'
imsave(output_fn, tmp_img)
save_fig.append(tmp_img)
save_fig.append(np.concatenate([x_sample[0,ni] for ni in range(N)], 1))
if flags.decomposed_sampling:
output_fn = Path(flags.output)/ f'{mode}_{flags.cfg_scales[0]}_{flags.cfg_scales[1]}.png'
else:
output_fn = Path(flags.output)/ f'{mode}_{flags.cfg_scales[0]}.png'
imsave(output_fn, np.concatenate([save_fig[bi] for bi in range(flags.sample_num)], 0))
if __name__=="__main__":
main()