-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCITATION.cff
49 lines (48 loc) · 1.52 KB
/
CITATION.cff
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
# This CITATION.cff file was generated with cffinit.
# Visit https://bit.ly/cffinit to generate yours today!
cff-version: 1.2.0
title: Generate stationary correlated time-series
message: >-
If you use this software, please cite it using the
metadata from this file.
type: software
authors:
- given-names: Dima
family-names: Bykhovsky
orcid: 'https://orcid.org/0000-0003-4468-7791'
- given-names: Netanel
family-names: Tochilovsky
- given-names: Alexander
family-names: Rudyak
orcid: 'https://orcid.org/0009-0005-0985-3434'
repository-code: 'https://github.com/bykhov/generate_corr_sequence'
abstract: >-
This Python function creates a time-series (discrete-time
random process) with a specific autocorrelation function
(ACF) and continuous probability distribution, e.g with
predefined probability density function (PDF).
keywords:
- Python
- time-series
- simulation
- wss
- autocorrelation
- random-process
- autocovariance
license: MIT
preferred-citation:
type: conference-paper
authors:
- family-names: "Bykhovsky"
given-names: "Dima"
- family-names: "Tochilovsky"
given-names: "Netanel"
- family-names: "Rudyak"
given-names: "Alexander"
doi: "10.1109/ICECET58911.2023.10389427"
journal: "2023 International Conference on Electrical, Computer and Energy Technologies (ICECET)"
month: 11
start: 1 # First page number
end: 6 # Last page number
title: "Python-Based Simulation of Non-Gaussian Stationary Random Process with Arbitrary Auto-Correlation Function"
year: 2023