-
Notifications
You must be signed in to change notification settings - Fork 252
/
eventloop.rs
418 lines (373 loc) · 16.4 KB
/
eventloop.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
use super::framed::Network;
use super::mqttbytes::v5::*;
use super::{Incoming, MqttOptions, MqttState, Outgoing, Request, StateError, Transport};
use crate::eventloop::socket_connect;
use crate::framed::N;
use flume::{bounded, Receiver, Sender};
use tokio::select;
use tokio::time::{self, error::Elapsed, Instant, Sleep};
use std::collections::VecDeque;
use std::convert::TryInto;
use std::io;
use std::pin::Pin;
use std::time::Duration;
use super::mqttbytes::v5::ConnectReturnCode;
#[cfg(any(feature = "use-rustls", feature = "use-native-tls"))]
use crate::tls;
#[cfg(unix)]
use {std::path::Path, tokio::net::UnixStream};
#[cfg(feature = "websocket")]
use {
crate::websockets::{split_url, validate_response_headers, UrlError},
async_tungstenite::tungstenite::client::IntoClientRequest,
ws_stream_tungstenite::WsStream,
};
#[cfg(feature = "proxy")]
use crate::proxy::ProxyError;
/// Critical errors during eventloop polling
#[derive(Debug, thiserror::Error)]
pub enum ConnectionError {
#[error("Mqtt state: {0}")]
MqttState(#[from] StateError),
#[error("Timeout")]
Timeout(#[from] Elapsed),
#[cfg(feature = "websocket")]
#[error("Websocket: {0}")]
Websocket(#[from] async_tungstenite::tungstenite::error::Error),
#[cfg(feature = "websocket")]
#[error("Websocket Connect: {0}")]
WsConnect(#[from] http::Error),
#[cfg(any(feature = "use-rustls", feature = "use-native-tls"))]
#[error("TLS: {0}")]
Tls(#[from] tls::Error),
#[error("I/O: {0}")]
Io(#[from] io::Error),
#[error("Connection refused, return code: `{0:?}`")]
ConnectionRefused(ConnectReturnCode),
#[error("Expected ConnAck packet, received: {0:?}")]
NotConnAck(Box<Packet>),
#[error("Requests done")]
RequestsDone,
#[cfg(feature = "websocket")]
#[error("Invalid Url: {0}")]
InvalidUrl(#[from] UrlError),
#[cfg(feature = "proxy")]
#[error("Proxy Connect: {0}")]
Proxy(#[from] ProxyError),
#[cfg(feature = "websocket")]
#[error("Websocket response validation error: ")]
ResponseValidation(#[from] crate::websockets::ValidationError),
}
/// Eventloop with all the state of a connection
pub struct EventLoop {
/// Options of the current mqtt connection
pub options: MqttOptions,
/// Current state of the connection
pub state: MqttState,
/// Request stream
requests_rx: Receiver<Request>,
/// Requests handle to send requests
pub(crate) requests_tx: Sender<Request>,
/// Pending packets from last session
pub pending: VecDeque<Request>,
/// Network connection to the broker
network: Option<Network>,
/// Keep alive time
keepalive_timeout: Option<Pin<Box<Sleep>>>,
}
/// Events which can be yielded by the event loop
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum Event {
Incoming(Incoming),
Outgoing(Outgoing),
}
impl EventLoop {
/// New MQTT `EventLoop`
///
/// When connection encounters critical errors (like auth failure), user has a choice to
/// access and update `options`, `state` and `requests`.
pub fn new(options: MqttOptions, cap: usize) -> EventLoop {
let (requests_tx, requests_rx) = bounded(cap);
let pending = VecDeque::new();
let inflight_limit = options.outgoing_inflight_upper_limit.unwrap_or(u16::MAX);
let manual_acks = options.manual_acks;
EventLoop {
options,
state: MqttState::new(inflight_limit, manual_acks),
requests_tx,
requests_rx,
pending,
network: None,
keepalive_timeout: None,
}
}
/// Last session might contain packets which aren't acked. MQTT says these packets should be
/// republished in the next session. Move pending messages from state to eventloop, drops the
/// underlying network connection and clears the keepalive timeout if any.
///
/// > NOTE: Use only when EventLoop is blocked on network and unable to immediately handle disconnect.
/// > Also, while this helps prevent data loss, the pending list length should be managed properly.
/// > For this reason we recommend setting [`AsycClient`](super::AsyncClient)'s channel capacity to `0`.
pub fn clean(&mut self) {
self.network = None;
self.keepalive_timeout = None;
self.pending.extend(self.state.clean());
// drain requests from channel which weren't yet received
let requests_in_channel = self.requests_rx.drain();
self.pending.extend(requests_in_channel);
}
/// Yields Next notification or outgoing request and periodically pings
/// the broker. Continuing to poll will reconnect to the broker if there is
/// a disconnection.
/// **NOTE** Don't block this while iterating
pub async fn poll(&mut self) -> Result<Event, ConnectionError> {
if self.network.is_none() {
let (network, connack) = time::timeout(
Duration::from_secs(self.options.connection_timeout()),
connect(&mut self.options),
)
.await??;
self.network = Some(network);
if self.keepalive_timeout.is_none() {
self.keepalive_timeout = Some(Box::pin(time::sleep(self.options.keep_alive)));
}
self.state.handle_incoming_packet(connack)?;
}
match self.select().await {
Ok(v) => Ok(v),
Err(e) => {
self.clean();
Err(e)
}
}
}
/// Select on network and requests and generate keepalive pings when necessary
async fn select(&mut self) -> Result<Event, ConnectionError> {
let network = self.network.as_mut().unwrap();
// let await_acks = self.state.await_acks;
let inflight_full = self.state.inflight >= self.state.max_outgoing_inflight;
let collision = self.state.collision.is_some();
// Read buffered events from previous polls before calling a new poll
if let Some(event) = self.state.events.pop_front() {
return Ok(event);
}
// this loop is necessary since self.incoming.pop_front() might return None. In that case,
// instead of returning a None event, we try again.
select! {
// Handles pending and new requests.
// If available, prioritises pending requests from previous session.
// Else, pulls next request from user requests channel.
// If conditions in the below branch are for flow control.
// The branch is disabled if there's no pending messages and new user requests
// cannot be serviced due flow control.
// We read next user user request only when inflight messages are < configured inflight
// and there are no collisions while handling previous outgoing requests.
//
// Flow control is based on ack count. If inflight packet count in the buffer is
// less than max_inflight setting, next outgoing request will progress. For this
// to work correctly, broker should ack in sequence (a lot of brokers won't)
//
// E.g If max inflight = 5, user requests will be blocked when inflight queue
// looks like this -> [1, 2, 3, 4, 5].
// If broker acking 2 instead of 1 -> [1, x, 3, 4, 5].
// This pulls next user request. But because max packet id = max_inflight, next
// user request's packet id will roll to 1. This replaces existing packet id 1.
// Resulting in a collision
//
// Eventloop can stop receiving outgoing user requests when previous outgoing
// request collided. I.e collision state. Collision state will be cleared only
// when correct ack is received
// Full inflight queue will look like -> [1a, 2, 3, 4, 5].
// If 3 is acked instead of 1 first -> [1a, 2, x, 4, 5].
// After collision with pkid 1 -> [1b ,2, x, 4, 5].
// 1a is saved to state and event loop is set to collision mode stopping new
// outgoing requests (along with 1b).
o = Self::next_request(
&mut self.pending,
&self.requests_rx,
self.options.pending_throttle
), if !self.pending.is_empty() || (!inflight_full && !collision) => match o {
Ok(request) => {
self.state.handle_outgoing_packet(request)?;
network.flush(&mut self.state.write).await?;
Ok(self.state.events.pop_front().unwrap())
}
Err(_) => Err(ConnectionError::RequestsDone),
},
// Pull a bunch of packets from network, reply in bunch and yield the first item
o = network.readb(&mut self.state) => {
o?;
// flush all the acks and return first incoming packet
network.flush(&mut self.state.write).await?;
Ok(self.state.events.pop_front().unwrap())
},
// We generate pings irrespective of network activity. This keeps the ping logic
// simple. We can change this behavior in future if necessary (to prevent extra pings)
_ = self.keepalive_timeout.as_mut().unwrap() => {
let timeout = self.keepalive_timeout.as_mut().unwrap();
timeout.as_mut().reset(Instant::now() + self.options.keep_alive);
self.state.handle_outgoing_packet(Request::PingReq)?;
network.flush(&mut self.state.write).await?;
Ok(self.state.events.pop_front().unwrap())
}
}
}
async fn next_request(
pending: &mut VecDeque<Request>,
rx: &Receiver<Request>,
pending_throttle: Duration,
) -> Result<Request, ConnectionError> {
if !pending.is_empty() {
time::sleep(pending_throttle).await;
// We must call .next() AFTER sleep() otherwise .next() would
// advance the iterator but the future might be canceled before return
Ok(pending.pop_front().unwrap())
} else {
match rx.recv_async().await {
Ok(r) => Ok(r),
Err(_) => Err(ConnectionError::RequestsDone),
}
}
}
}
/// This stream internally processes requests from the request stream provided to the eventloop
/// while also consuming byte stream from the network and yielding mqtt packets as the output of
/// the stream.
/// This function (for convenience) includes internal delays for users to perform internal sleeps
/// between re-connections so that cancel semantics can be used during this sleep
async fn connect(options: &mut MqttOptions) -> Result<(Network, Incoming), ConnectionError> {
// connect to the broker
let mut network = network_connect(options).await?;
// make MQTT connection request (which internally awaits for ack)
let packet = mqtt_connect(options, &mut network).await?;
// Last session might contain packets which aren't acked. MQTT says these packets should be
// republished in the next session
// move pending messages from state to eventloop
// let pending = self.state.clean();
// self.pending = pending.into_iter();
Ok((network, packet))
}
async fn network_connect(options: &MqttOptions) -> Result<Network, ConnectionError> {
let mut max_incoming_pkt_size = Some(options.default_max_incoming_size);
// Override default value if max_packet_size is set on `connect_properties`
if let Some(connect_props) = &options.connect_properties {
if let Some(max_size) = connect_props.max_packet_size {
let max_size = max_size.try_into().map_err(StateError::Coversion)?;
max_incoming_pkt_size = Some(max_size);
}
}
// Process Unix files early, as proxy is not supported for them.
#[cfg(unix)]
if matches!(options.transport(), Transport::Unix) {
let file = options.broker_addr.as_str();
let socket = UnixStream::connect(Path::new(file)).await?;
let network = Network::new(socket, max_incoming_pkt_size);
return Ok(network);
}
// For websockets domain and port are taken directly from `broker_addr` (which is a url).
let (domain, port) = match options.transport() {
#[cfg(feature = "websocket")]
Transport::Ws => split_url(&options.broker_addr)?,
#[cfg(all(feature = "use-rustls", feature = "websocket"))]
Transport::Wss(_) => split_url(&options.broker_addr)?,
_ => options.broker_address(),
};
let tcp_stream: Box<dyn N> = {
#[cfg(feature = "proxy")]
match options.proxy() {
Some(proxy) => {
proxy
.connect(&domain, port, options.network_options())
.await?
}
None => {
let addr = format!("{domain}:{port}");
let tcp = socket_connect(addr, options.network_options()).await?;
Box::new(tcp)
}
}
#[cfg(not(feature = "proxy"))]
{
let addr = format!("{domain}:{port}");
let tcp = socket_connect(addr, options.network_options()).await?;
Box::new(tcp)
}
};
let network = match options.transport() {
Transport::Tcp => Network::new(tcp_stream, max_incoming_pkt_size),
#[cfg(any(feature = "use-native-tls", feature = "use-rustls"))]
Transport::Tls(tls_config) => {
let socket =
tls::tls_connect(&options.broker_addr, options.port, &tls_config, tcp_stream)
.await?;
Network::new(socket, max_incoming_pkt_size)
}
#[cfg(unix)]
Transport::Unix => unreachable!(),
#[cfg(feature = "websocket")]
Transport::Ws => {
let mut request = options.broker_addr.as_str().into_client_request()?;
request
.headers_mut()
.insert("Sec-WebSocket-Protocol", "mqtt".parse().unwrap());
if let Some(request_modifier) = options.request_modifier() {
request = request_modifier(request).await;
}
let (socket, response) =
async_tungstenite::tokio::client_async(request, tcp_stream).await?;
validate_response_headers(response)?;
Network::new(WsStream::new(socket), max_incoming_pkt_size)
}
#[cfg(all(feature = "use-rustls", feature = "websocket"))]
Transport::Wss(tls_config) => {
let mut request = options.broker_addr.as_str().into_client_request()?;
request
.headers_mut()
.insert("Sec-WebSocket-Protocol", "mqtt".parse().unwrap());
if let Some(request_modifier) = options.request_modifier() {
request = request_modifier(request).await;
}
let connector = tls::rustls_connector(&tls_config).await?;
let (socket, response) = async_tungstenite::tokio::client_async_tls_with_connector(
request,
tcp_stream,
Some(connector),
)
.await?;
validate_response_headers(response)?;
Network::new(WsStream::new(socket), max_incoming_pkt_size)
}
};
Ok(network)
}
async fn mqtt_connect(
options: &mut MqttOptions,
network: &mut Network,
) -> Result<Incoming, ConnectionError> {
let keep_alive = options.keep_alive().as_secs() as u16;
let clean_start = options.clean_start();
let client_id = options.client_id();
let properties = options.connect_properties();
let connect = Connect {
keep_alive,
client_id,
clean_start,
properties,
};
// send mqtt connect packet
network.connect(connect, options).await?;
// validate connack
match network.read().await? {
Incoming::ConnAck(connack) if connack.code == ConnectReturnCode::Success => {
// Override local keep_alive value if set by server.
if let Some(props) = &connack.properties {
if let Some(keep_alive) = props.server_keep_alive {
options.keep_alive = Duration::from_secs(keep_alive as u64);
}
}
Ok(Packet::ConnAck(connack))
}
Incoming::ConnAck(connack) => Err(ConnectionError::ConnectionRefused(connack.code)),
packet => Err(ConnectionError::NotConnAck(Box::new(packet))),
}
}