-
Notifications
You must be signed in to change notification settings - Fork 86
/
utils.py
executable file
·158 lines (120 loc) · 4.36 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# Copyright (2024) Tsinghua University, Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import time
import torch
from torch.utils.data import DataLoader, DistributedSampler
import soundfile as sf
import numpy as np
from dist_utils import is_main_process, get_world_size, get_rank
def now():
from datetime import datetime
return datetime.now().strftime("%Y%m%d%H%M")
def setup_logger():
logging.basicConfig(
level=logging.INFO if is_main_process() else logging.WARN,
format="%(asctime)s [%(levelname)s] %(message)s",
handlers=[logging.StreamHandler()],
)
def get_dataloader(dataset, config, is_train=True, use_distributed=True):
if use_distributed:
sampler = DistributedSampler(
dataset,
shuffle=is_train,
num_replicas=get_world_size(),
rank=get_rank()
)
else:
sampler = None
loader = DataLoader(
dataset,
batch_size=config.batch_size_train if is_train else config.batch_size_eval,
num_workers=config.num_workers,
pin_memory=True,
sampler=sampler,
shuffle=sampler is None and is_train,
collate_fn=dataset.collater,
drop_last=is_train,
)
if is_train:
loader = IterLoader(loader, use_distributed=use_distributed)
return loader
def apply_to_sample(f, sample):
if len(sample) == 0:
return {}
def _apply(x):
if torch.is_tensor(x):
return f(x)
elif isinstance(x, dict):
return {key: _apply(value) for key, value in x.items()}
elif isinstance(x, list):
return [_apply(x) for x in x]
else:
return x
return _apply(sample)
def move_to_cuda(sample):
def _move_to_cuda(tensor):
return tensor.cuda()
return apply_to_sample(_move_to_cuda, sample)
def prepare_sample(samples, cuda_enabled=True):
if cuda_enabled:
samples = move_to_cuda(samples)
# TODO fp16 support
return samples
class IterLoader:
"""
A wrapper to convert DataLoader as an infinite iterator.
Modified from:
https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/iter_based_runner.py
"""
def __init__(self, dataloader: DataLoader, use_distributed: bool = False):
self._dataloader = dataloader
self.iter_loader = iter(self._dataloader)
self._use_distributed = use_distributed
self._epoch = 0
@property
def epoch(self) -> int:
return self._epoch
def __next__(self):
try:
data = next(self.iter_loader)
except StopIteration:
self._epoch += 1
if hasattr(self._dataloader.sampler, "set_epoch") and self._use_distributed:
self._dataloader.sampler.set_epoch(self._epoch)
time.sleep(2) # Prevent possible deadlock during epoch transition
self.iter_loader = iter(self._dataloader)
data = next(self.iter_loader)
return data
def __iter__(self):
return self
def __len__(self):
return len(self._dataloader)
def prepare_one_sample(wav_path, wav_processor, cuda_enabled=True):
audio, sr = sf.read(wav_path)
if len(audio.shape) == 2: # stereo to mono
audio = audio[:, 0]
if len(audio) < sr: # pad audio to at least 1s
sil = np.zeros(sr - len(audio), dtype=float)
audio = np.concatenate((audio, sil), axis=0)
audio = audio[: sr * 30] # truncate audio to at most 30s
spectrogram = wav_processor(audio, sampling_rate=sr, return_tensors="pt")["input_features"]
samples = {
"spectrogram": spectrogram,
"raw_wav": torch.from_numpy(audio).unsqueeze(0),
"padding_mask": torch.zeros(len(audio), dtype=torch.bool).unsqueeze(0),
}
if cuda_enabled:
samples = move_to_cuda(samples)
return samples