forked from TBrost/BYUI-Timeseries-Drafts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchapter_1_lesson_5_handout.qmd
317 lines (256 loc) · 8.52 KB
/
chapter_1_lesson_5_handout.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
---
title: "Chapter 1 Lesson 5: In-Class Worksheet"
format: html
editor: source
sidebar: false
---
```{r}
#| include: false
source("common_functions.R")
```
```{=html}
<script type="text/javascript">
function showhide(id) {
var e = document.getElementById(id);
e.style.display = (e.style.display == 'block') ? 'none' : 'block';
}
function openTab(evt, tabName) {
var i, tabcontent, tablinks;
tabcontent = document.getElementsByClassName("tabcontent");
for (i = 0; i < tabcontent.length; i++) {
tabcontent[i].style.display = "none";
}
tablinks = document.getElementsByClassName("tablinks");
for (i = 0; i < tablinks.length; i++) {
tablinks[i].className = tablinks[i].className.replace(" active", "");
}
document.getElementById(tabName).style.display = "block";
evt.currentTarget.className += " active";
}
</script>
```
#### Start by finding the values of $\hat s_t$ in Table 5. Use Table 4 as needed to complete Table 5.
```{r}
#| echo: false
apple_raw <- rio::import("https://byuistats.github.io/timeseries/data/apple_revenue.csv")
apple_raw <- rio::import("data/apple_revenue.csv")
apple_tibble <- apple_raw |>
mutate(
dates = mdy(date),
year = lubridate::year(dates),
quarter = lubridate::quarter(dates),
value = revenue_billions
) |>
dplyr::select(dates, year, quarter, value) |>
arrange(dates) |>
tibble()
# Create the index variable and convert to a tsibble
apple_ts <- apple_tibble |>
mutate(index = tsibble::yearquarter(dates)) |>
as_tsibble(index = index) |>
dplyr::select(index, dates, year, quarter, value) |>
rename(revenue = value) # rename value to emphasize data context
# computes the 4-quarter centered moving average (m_hat)
apple_ts <- apple_ts |>
mutate(
m_hat = (
(1/2) * lag(revenue, 2)
+ lag(revenue, 1)
+ revenue
+ lead(revenue, 1)
+ (1/2) * lead(revenue, 2)
) / 4
)
apple_shat_ts <- apple_ts |>
dplyr::select(index, year, quarter, revenue, m_hat) |>
mutate(s_hat = revenue / m_hat)
```
```{r}
#| echo: false
#| warning: false
# Compute s_hat
apple_shat_ts2 <- apple_shat_ts |>
data.frame() |>
mutate(quarter = paste0("Q",quarter)) |>
round_df(3) # Round df to make the computations simpler
wider_df <- apple_shat_ts2 |>
dplyr::select(year, quarter, s_hat) |>
pivot_wider(values_from = "s_hat", names_from = "quarter")
wider_df2 <- wider_df %>%
round_df(3)
wider_df3 <- wider_df2 |>
# Hide bar_s_t values for November and December
# mutate(Q1 = ifelse(row_number() == 1, "", Q1)) |>
# mutate(Q2 = ifelse(row_number() == 1, "", Q2)) |>
mutate(Q3 = ifelse(row_number() == 1, "", Q3)) |>
mutate(Q4 = ifelse(row_number() == 1, "", Q4)) |>
mutate(Q1 = ifelse(row_number() == 2, "", Q1)) |>
mutate(Q2 = ifelse(row_number() == 2, "", Q2)) |>
mutate(Q3 = ifelse(row_number() == 2, "", Q3)) |>
rename(Year = year)
column_sum <- wider_df3 |>
pivot_longer(cols = c("Q1", "Q2", "Q3", "Q4"), values_to = "revenue", names_to = "quarter") |>
mutate(revenue = as.numeric(revenue)) |>
group_by(quarter) |>
summarise(sum = sum(revenue, na.rm = TRUE))
```
<!-- Blank line for visual spacing -->
<br>
#### Table 5: Compute $\hat s_t$; then use Table 4 to find $\bar s_t$. Use $\bar s_t$ to find the random component and the seasonally adjusted time series values.
```{r}
#| echo: false
#| warning: false
num_blank_rows <- 7
num_addl_rows <- 3
# Compute s_hat
apple_ts2 <- apple_ts |>
mutate(s_hat = revenue / m_hat)
# Compute the unadjusted_s_bar and s_bar
adj_s_bar_df <- apple_ts2 |>
data.frame() |>
group_by(quarter) |>
summarize(unadjusted_s_bar = mean(s_hat, na.rm = TRUE)) |>
mutate(s_bar_bar = mean(unadjusted_s_bar)) |>
mutate(s_bar = unadjusted_s_bar / s_bar_bar) |>
dplyr::select(quarter, s_bar, s_bar_bar)
# Get seasonally adjusted time series
adjusted_ts <- apple_ts2 |>
left_join(adj_s_bar_df, by = join_by(quarter)) |>
mutate(random = revenue / ( m_hat * s_bar) ) |>
mutate(seasonally_adjusted_x = revenue / s_bar) |>
dplyr::select(-s_bar_bar) |>
as.data.frame() |>
dplyr::select(index, revenue, m_hat, s_hat, s_bar, random, seasonally_adjusted_x)
additional_rows_from_adjusted_ts <- head(adjusted_ts,num_blank_rows + num_addl_rows) |>
tail(num_addl_rows) |>
convert_df_to_char(3)
adjusted_ts |>
as_tibble() |>
round_df(3) |>
filter(row_number() <= num_blank_rows) |>
mutate(
s_hat = "",
s_bar = "",
random = "",
seasonally_adjusted_x = ""
) |>
convert_df_to_char() |>
bind_rows(additional_rows_from_adjusted_ts) |>
dplyr::select(index, revenue, m_hat, s_hat, s_bar, random, seasonally_adjusted_x) |>
rename(
Quarter = index,
"Revenue $$x_t$$" = revenue,
"$$ \\hat m_t $$" = m_hat,
"$$ \\hat s_t $$" = s_hat,
"$$ \\bar s_t $$" = s_bar,
Random = random,
"Seasonally Adjusted $$x_t$$" = seasonally_adjusted_x
) |>
blank_out_one_cell_in_df(row_num = 4, col_num = 3) |>
blank_out_one_cell_in_df(row_num = 6, col_num = 3) |>
blank_out_one_cell_in_df(row_num = 8, col_num = 3) |>
display_partial_table(num_blank_rows + num_addl_rows, 0)
```
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
#### Table 4: Table of $\hat s_t$ values, quarterly means of $\hat s_t$, and seasonally adjusted factor $\bar s_t$.
```{r}
#| echo: false
wider_df3 |>
rbind(c("Mean", rep("",4))) |>
rbind(c("$$ \\bar s_t $$", rep("",4))) |>
display_table()
```
<!-- <a href="javascript:showhide('Solutions2')" -->
<!-- style="font-size:.8em;">Tables 4 and 5</a> -->
<!-- ::: {#Solutions2 style="display:none;"} -->
<!-- Solutions for the computations from this lesson -->
<!-- #### Table 5: (Solutions) -->
<!-- ```{r} -->
<!-- #| echo: false -->
<!-- adjusted_ts |> -->
<!-- round_df(3) |> -->
<!-- filter(row_number() <= num_blank_rows) |> -->
<!-- mutate( -->
<!-- s_hat = cell_spec(s_hat, color = "#E69F00"), -->
<!-- s_bar = cell_spec(s_bar, color = "#009E73"), -->
<!-- random = cell_spec(random, color = "#009E73"), -->
<!-- seasonally_adjusted_x = cell_spec(seasonally_adjusted_x, color = "#009E73") -->
<!-- ) |> -->
<!-- convert_df_to_char() |> -->
<!-- bind_rows(additional_rows_from_adjusted_ts) |> -->
<!-- rename( -->
<!-- Quarter = index, -->
<!-- "Revenue $$x_t$$" = revenue, -->
<!-- "$$ \\hat m_t $$" = m_hat, -->
<!-- "$$ \\hat s_t $$" = s_hat, -->
<!-- "$$ \\bar s_t $$" = s_bar, -->
<!-- Random = random, -->
<!-- "Seasonally Adjusted $$x_t$$" = seasonally_adjusted_x -->
<!-- ) |> -->
<!-- display_table() -->
<!-- ``` -->
<!-- #### Table 4: (Solutions) -->
<!-- ```{r} -->
<!-- #| echo: false -->
<!-- #| warning: false -->
<!-- #| eval: false -->
<!-- # Compute s_hat -->
<!-- apple_shat_ts2 <- apple_shat_ts |> -->
<!-- data.frame() |> -->
<!-- mutate(quarter = paste0("Q",quarter)) |> -->
<!-- round_df(3) # Round df to make the computations simpler -->
<!-- wider_df <- apple_shat_ts2 |> -->
<!-- dplyr::select(year, quarter, s_hat) |> -->
<!-- pivot_wider(values_from = "s_hat", names_from = "quarter") -->
<!-- wider_df2 <- wider_df %>% -->
<!-- round_df(3) -->
<!-- wider_df3 <- wider_df2 |> -->
<!-- rename(Year = year) -->
<!-- column_sum <- wider_df3 |> -->
<!-- pivot_longer(cols = c("Q1", "Q2", "Q3", "Q4"), values_to = "revenue", names_to = "quarter") |> -->
<!-- mutate(revenue = as.numeric(revenue)) |> -->
<!-- group_by(quarter) |> -->
<!-- summarise(mean = mean(revenue, na.rm = TRUE)) |> -->
<!-- group_by() |> -->
<!-- mutate( -->
<!-- grand_mean = mean(mean), -->
<!-- adjusted = mean / grand_mean -->
<!-- ) |> -->
<!-- dplyr::select(-grand_mean) |> -->
<!-- # mutate(Year = "Mean") |> -->
<!-- # pivot_wider(names_from = quarter, values_from = c("mean", "adjusted")) |> -->
<!-- convert_df_to_char(3) |> -->
<!-- dplyr::select(-quarter) |> -->
<!-- transpose() |> -->
<!-- rename(Q1 = V1, Q2 = V2, Q3 = V3, Q4 = V4) |> -->
<!-- mutate(Year = c("Mean","$$ \\bar s_t $$")) |> -->
<!-- dplyr::select(Year, Q1:Q4) -->
<!-- wider_df3 |> -->
<!-- convert_df_to_char() |> -->
<!-- color_specific_cell(1, 4, "#0072B2") |> -->
<!-- color_specific_cell(1, 5, "#0072B2") |> -->
<!-- color_specific_cell(2, 2, "#0072B2") |> -->
<!-- color_specific_cell(2, 3, "#0072B2") |> -->
<!-- color_specific_cell(2, 4, "#0072B2") |> -->
<!-- rbind(column_sum |> head(1)) |> -->
<!-- color_last_row2("#0072B2") |> -->
<!-- rbind(column_sum |> tail(1)) |> -->
<!-- color_last_row2("#0072B2") |> -->
<!-- display_table() -->
<!-- ``` -->
<!-- ::: -->