forked from TBrost/BYUI-Timeseries-Drafts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchapter_6_lesson_1.qmd
750 lines (501 loc) · 22.3 KB
/
chapter_6_lesson_1.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
---
title: "Moving Average (MA) Models"
subtitle: "Chapter 6: Lesson 1"
format: html
editor: source
sidebar: false
---
```{r}
#| include: false
source("common_functions.R")
```
```{=html}
<script type="text/javascript">
function showhide(id) {
var e = document.getElementById(id);
e.style.display = (e.style.display == 'block') ? 'none' : 'block';
}
function openTab(evt, tabName) {
var i, tabcontent, tablinks;
tabcontent = document.getElementsByClassName("tabcontent");
for (i = 0; i < tabcontent.length; i++) {
tabcontent[i].style.display = "none";
}
tablinks = document.getElementsByClassName("tablinks");
for (i = 0; i < tablinks.length; i++) {
tablinks[i].className = tablinks[i].className.replace(" active", "");
}
document.getElementById(tabName).style.display = "block";
evt.currentTarget.className += " active";
}
</script>
```
## Learning Outcomes
{{< include outcomes/_chapter_6_lesson_1_outcomes.qmd >}}
## Preparation
- Read Sections 6.1-6.4
## Learning Journal Exchange (10 min)
- Review another student's journal
- What would you add to your learning journal after reading another student's?
- What would you recommend the other student add to their learning journal?
- Sign the Learning Journal review sheet for your peer
## Class Activity: Introduction to Moving Average (MA) Models (15 min)
### Stationary Processes
In previous chapters, we have explored how to identify and remove the trend and seasonal components of a time series. After the trend and seasonal component have been properly removed, the residual should be stationary. However, these residual components may still contain autocorrelation.
In this chapter, we will explore stationary models that are appropriate when there are no obvious trends or seasonal elements. Combining the fitted stationary model with the estimated trend and seasonal components can improve our ability to make forecasts. We will build on the autoregressive (AR) models we learned in Chapter 4.
### Strictly Stationary Series
First, we define a strictly stationary series.
::: {.callout-note icon=false title="Definition of Strict Stationarity"}
A time series model $\{x_t\}$ is said to be **strictly stationary** if the joint distribution of the random variables
$x_{t_1}, x_{t_2}, \ldots, x_{t_n}$ is the same as the joint distribution of
$x_{t_1+m}, x_{t_2+m}, \ldots, x_{t_n+m}$ for all $t_1, t_2, \ldots, t_n$ and $m$, so that the distribution of the values in the time series is the same after an arbitrary time shift.
:::
If a time series is strictly stationary, then its mean and variance are constant in time. Hence, the autocovariance $cov(x_t, x_s)$ depends only on the lag, $k = | t - s |$. We can therefore denote the covariance function as $\gamma(k) = cov(x_t, x_{t+k})$.
**Note:** It is possible that a series could have a constant mean and variance in time and the autocovariance depends only on the lag, but the series is not strictly stationary. This is called **second-order stationary**.
We will focus on the second-order properties of the time series, even though all the series we will explore in this chapter are strictly stationary.
**Note:** if a white noise process is Gaussian, the stochastic process is completely determined by the mean and covariance structure. This is similar to how a (univariate or multivariate) normal distribution is completely specified by the mean and variance-covariance matrix.
The concept of stationarity is a property of time series models. When we use certain models, we are assuming stationarity. Before we apply these models, it is important to check for stationarity in the time series. In other words, we check to see if there is evidence of a trend or seasonality and if so, we remove these components.
We can use methods such as decomposition, Holt-Winters, or regression to remove the trend and seasonality. Hence, it is typically reasonable to consider the residual series as a stationary series.
Typically the models in this chapter are applied to the residual series from a regression or similar analysis.
### Moving Average (MA) Models
Recall in [Chapter 4, Lesson 3](https://byuistats.github.io/timeseries/chapter_4_lesson_3.html#ARdefinition), we learned the definition of an AR model:
::: {.callout-note icon=false title="Definition of an Autoregressive (AR) Model"}
The time series $\{x_t\}$ is an **autoregressive process of order $p$**, denoted as $AR(p)$, if
$$
x_t = \alpha_1 x_{t-1} + \alpha_2 x_{t-2} + \alpha_3 x_{t-3} + \cdots + \alpha_{p-1} x_{t-(p-1)} + \alpha_p x_{t-p} + w_t ~~~~~~~~~~~~~~~~~~~~~~~ (4.15)
$$
where $\{w_t\}$ is white noise and the $\alpha_i$ are the model parameters with $\alpha_p \ne 0$.
:::
The $AR(p)$ model can be expressed in terms of the backward shift operator:
$$
\left( 1 - \alpha_1 \mathbf{B} - \alpha_2 \mathbf{B}^2 - \cdots - \alpha_p \mathbf{B}^p \right) x_t = w_t
$$
Now, we consider a different, but related model, the moving average (MA) model
::: {.callout-note icon=false title="Definition of a Moving Average (MA) Model"}
We say that a time series $\{x_t\}$ is a **moving average process of order $q$**, denoted as $MA(q)$, if each term in the time series is a linear combination of the current white noise term and the $q$ most recent past white noise terms.
It is given as:
$$
x_t = w_t + \beta_1 w_{t-1} + \beta_2 w_{t-2} + \beta_3 w_{t-3} + \cdots + \beta_{q-1} w_{t-(q-1)} + \beta_q w_{t-q} ~~~~~~~~~~~~~~~~~~~~~~~ (6.1)
$$
where $\{w_t\}$ is white noise with zero mean and variance $\sigma_w^2$, and the $\beta_i$ are the model parameters with $\beta_q \ne 0$.
:::
<!-- In the check your understanding below, -->
<!-- The students write the MA model in terms -->
<!-- of the backward shift operator. -->
<!-- Check your Understanding -->
::: {.callout-tip icon=false title="Check Your Understanding"}
- Write Equation (6.1) in terms of the backward shift operator. Your answer will be of the form:
$$
x_t
= (\text{some}~q^{th}~\text{degree polynomial in}~\mathbf{B}) w_t
= \phi_q(\mathbf{B}) w_t
$$
:::
::: {.callout-caution icon=false title="Note"}
An $MA(q)$ process is comprised of a finite summation of stationary white noise terms. Hence, an $MA(q)$ process will be stationary with a time-invariante mean and autocovariance.
The mean and variance of $\{x_t\}$ are easily derived. The mean must be zero, because each term is a sum of scaled white noise terms with mean zero.
The variance of an $MA(q)$ process is ${ \sigma_w^2 \left( 1 + \beta_1^2 + \beta_2^2 + \beta_3^2 + \cdots + \beta_{q-1}^2 + \beta_q^2 \right) }$. This can be seen, because the white noise terms are independent with the same variance.
So, the autocorrelation function is
$$
\rho(k) =
cor(x_t, x_{t+k}) =
\begin{cases}
1, & k=0 \\
~\\
\dfrac{ \sum\limits_{i=0}^{q-k} \beta_i \beta_{i+k} }{ \sum\limits_{i=0}^q \beta_i^2 }, & k = 1, 2, \ldots, q \\
~\\
0, & k > q
\end{cases}
$$
where $\beta_0 = 1$.
Note that the autocorrelation function is zero if $k>q$, because $x_t$ and $x_{t+k}$ would be independent weighted summations of white noise processes and hence the covariance between them would be zero.
:::
We now define an invertible $MA$ process.
::: {.callout-note icon=false title="Definition of an Invertible $MA$ Process"}
An $MA$ process is said to be **invertible** if it can be expressed as a stationary autoregressive process (of infinite order) with no error term.
:::
#### Example of an Invertible MA Process
Recall that
$$
(1-x)(1 + x + x^2 + x^3 + \cdots) = 1
$$
or,
$$
(1-x)^{-1} = (1 + x + x^2 + x^3 + \cdots)
$$
if $|x|<1$.
Now, note that the $MA$ process
$$
x_t = \left( 1 - \beta \mathbf{B} \right) w_t
$$
can be written as:
\begin{align*}
\left( 1 - \beta \mathbf{B} \right)^{-1} x_t &= w_t \\
\left( 1 + \beta \mathbf{B} + \beta^2 \mathbf{B}^2 + \beta^3 \mathbf{B}^3 + \cdots \right) x_t &= w_t \\
x_t + \beta x_{t-1} + \beta^2 x_{t-2} + \beta^3 x_{t-3} + \cdots &= w_t \\
x_t &= \left( -\beta x_{t-1} - \beta^2 x_{t-2} - \beta^3 x_{t-3} - \cdots \right) + w_t
\end{align*}
assuming that $|\beta|<1$. Note that this series will not converge unless $|\beta|<1$.
We have just shown that the $MA$ process
$$
x_t = \left( 1 - \beta \mathbf{B} \right) w_t
$$
is invertible.
::: {.callout-note icon=false title="Theorem: Invertibility of an $MA(q)$ Process"}
The $MA(q)$ process
$$
x_t = \phi_q(\mathbf{B}) w_t
$$
will be invertible if the solutions to the equation
$$
\phi_q(\mathbf{B}) = 0
$$
are all greater than 1 in absolute value.
:::
<a id="FittedModelWillBeInvertible">Does</a> this remind you of the test for the stationarity of an $AR(p)$ model?
Note that the autocovariance function (acvf) will identify a unique $MA(q)$ process only if the process is invertible. Fortunately, the algorithm R uses to estimate an $MA(q)$ process always leads to an invertible model.
## Class Activity: Simulating an $MA(q)$ Model (5 min)
The textbook gives a simulation of an $MA(3)$ process:
$$
x_t = w_t + \beta_1 w_{t-1} + \beta_2 w_{t-2} + \beta_3 w_{t-3}
$$
where $\beta_1 = 0.7$, $\beta_1 = 0.5$, and $\beta_3 = 0.2$. This shiny app allows you to simulate from this process.
```{=html}
<iframe id="MA3Simulation" src="https://posit.byui.edu/content/edfd752d-58f2-468e-8695-a28a5b4eec6f" style="border: none; width: 100%; height: 1030px" frameborder="0"></iframe>
```
<!-- The code below is replaced by the shiny app above. -->
<!-- ```{r} -->
<!-- #| code-fold: true -->
<!-- #| code-summary: "Show the code" -->
<!-- pacman::p_load("tsibble", "fable", "feasts", -->
<!-- "tsibbledata", "fable.prophet", "tidyverse", -->
<!-- "patchwork", "slider", "urca") -->
<!-- # define the parameters of the simulation -->
<!-- beta1 <- 0.7 -->
<!-- beta2 <- 0.5 -->
<!-- beta3 <- 0.2 -->
<!-- # function to compute the autocorrelation -->
<!-- rho <- function(k, beta) { -->
<!-- q <- length(beta) - 1 -->
<!-- if (k > q) ACF <- 0 else { -->
<!-- s1 <- 0; s2 <- 0 -->
<!-- for (i in 1:(q-k+1)) s1 <- s1 + beta[i] * beta[i+k] -->
<!-- for (i in 1:(q+1)) s2 <- s2 + beta[i]^2 -->
<!-- ACF <- s1 / s2} -->
<!-- ACF -->
<!-- } -->
<!-- # create the tibble -->
<!-- acf_dat <- tibble( -->
<!-- order = 0:10, -->
<!-- betas = list(c(1, beta1, beta2, beta3)), -->
<!-- rho.k = map2_dbl(order, betas, ~rho(.x, .y))) -->
<!-- # generate the autocorrelation plot -->
<!-- acf_dat |> -->
<!-- ggplot(aes(x = order, y = rho.k)) + -->
<!-- geom_hline(yintercept = 0, color = "darkgrey") + -->
<!-- geom_point() + -->
<!-- labs(y = expression(rho[k]), x = "lag k") + -->
<!-- labs( -->
<!-- x = "Time", -->
<!-- y = "ACF", -->
<!-- title = "Theoretical ACF for the Simulated MA(3) Process" -->
<!-- ) + -->
<!-- theme_bw() + -->
<!-- theme( -->
<!-- plot.title = element_text(hjust = 0.5) -->
<!-- ) -->
<!-- ``` -->
<!-- Now, we simulate data from this process. -->
<!-- ```{r} -->
<!-- #| code-fold: true -->
<!-- #| code-summary: "Show the code" -->
<!-- set.seed(1234) -->
<!-- dat <- tibble( -->
<!-- w = rnorm(1000), -->
<!-- betas = list(c(beta1, beta2, beta3))) |> -->
<!-- mutate( -->
<!-- w_lag = slide(w, ~.x, .before = 3, .after = -1), -->
<!-- w_lag = map(w_lag, ~rev(.x)), -->
<!-- t = 1:n()) |> -->
<!-- slice(-c(1:3)) |> -->
<!-- mutate( -->
<!-- lag_betas = map2_dbl( -->
<!-- w_lag, -->
<!-- betas, -->
<!-- \(.x, .y) sum(.x *.y)), -->
<!-- x = w + lag_betas) |> -->
<!-- tsibble::as_tsibble(index = t) -->
<!-- autoplot(dat, .var = x) -->
<!-- ``` -->
<!-- Here is the acf function computed from the simulated data. -->
<!-- ```{r} -->
<!-- #| code-fold: true -->
<!-- #| code-summary: "Show the code" -->
<!-- dat |> -->
<!-- ACF(y = x) |> -->
<!-- autoplot() -->
<!-- ``` -->
<!-- Check Your Understanding -->
::: {.callout-tip icon=false title="Check Your Understanding"}
Use the simulation above to do the following:
- Generate the theoretical acf plot for the $MA(3)$ model
$$
x_t = w_t - 0.7 w_{t-1} + 0.5 w_{t-2} - 0.2 w_{t-3}
$$
- How does the value of the $\beta$'s affect the acf?
- Simulate 1000 observations from this $MA(3)$ process.
- Give the time plot of the simulated data
- Plot the acf of the simulated data.
- Compare the acf from the simulated data with the theoretical acf.
:::
## Class Activity: Identifying AR and MA Models from the ACF and PACF (5 min)
#### AR Process
Recall that on page 81, the textbook states that in general, the partial autocorrelation at lag $k$ is the $k^{th}$ coefficient of a fitted $AR(k)$ model.
This implies that if the underlying process is $AR(p)$, then all the coefficients $\alpha_k$ will equal 0 whenever $k>p$. So, an $AR(p)$ process will result in partial correlations that are zero after lag $p$. So, we can look at the correlogram of partial autocorrelations to determine the order of an appropriate $AR$ process to model a time series.
#### MA Process
Similarly, for an $MA(q)$ process, the coefficients $\beta_k$ will equal 0 whenever $k > q$. Hence, an $MA(q)$ process will demonstrate autocorrelations that are 0 after lag $q$. So, considering the correlogram of autocorrelations, we can assess if an $MA(q)$ model would be appropriate.
Bless their hearts, the textbook authors give a bad example in Section 6.4.2. They even state that it is "not a realistic realisation." MA processes naturally arise in ratios of observed data. Multi-period asset returns (i.e. ratios of some previous term's value) tend to follow an MA process.
For example, if there are 252 trading days in a year, then the daily series of year-over-year returns (this year's value divided by last year's value) follows an $MA(252-1)$ process. If we are comparing values observed to those from one week ago, we would have an $MA(7-1)$ process.
#### Comparison
::: {.callout-note icon=false title="ACF and PACF of an $AR(p)$ Process"}
We can use the pacf and acf plots to assess if an $AR(p)$ or $MA(q)$ model is appropriate.
For an $AR(p)$ or $MA(q)$ process, we observe the following:
<center>
| | AR(p) | MA(q) |
|------|------------------------|------------------------|
| ACF | Tails off | Cuts off after lag $q$ |
| PACF | Cuts off after lag $p$ | Tails off |
</center>
<!-- https://people.cs.pitt.edu/~milos/courses/cs3750/lectures/class16.pdf -->
<!-- | | AR(p) | MA(q) | ARMA(p,q) | -->
<!-- |------|------------------------|------------------------|--------------------------| -->
<!-- | ACF | Tails off | Cuts off after lag $q$ | Tails off | -->
<!-- | PACF | Cuts off after lag $p$ | Tails off | Tails off | -->
:::
## Class Activity: Fitting an $MA(q)$ Model to GDP Year-Over-Year Ratios (5 min)
To fit an $MA(q)$ model, we look at the acf to determine if it cuts off after $q$ lags.
```{r}
#| code-fold: true
#| code-summary: "Show the code"
# gdp_ts <- rio::import("https://byuistats.github.io/timeseries/data/gdp_fred.csv") |>
gdp_ts <- rio::import("data/gdp_fred.csv") |>
select(-comments) |>
mutate(year_over_year = gdp_millions / lag(gdp_millions, 4)) |>
mutate(quarter = yearquarter(mdy(quarter))) |>
filter(quarter >= yearquarter(my("Jan 1990")) & quarter < yearquarter(my("Jan 2025"))) |>
na.omit() |>
mutate(t = 1:n()) |>
mutate(std_t = (t - mean(t)) / sd(t)) |>
as_tsibble(index = quarter)
gdp_ts |>
autoplot(.vars = gdp_millions) +
labs(
x = "Quarter",
y = "GDP (Millions of $US)",
title = "U.S. Gross Domestic Product (GDP) in Millions of Dollars"
) +
theme_minimal() +
theme(plot.title = element_text(hjust = 0.5))
gdp_ts |>
autoplot(.vars = year_over_year) +
stat_smooth(method = "lm",
formula = y ~ x,
geom = "smooth",
se = FALSE,
color = "#E69F00",
linetype = "dotted") +
labs(
x = "Quarter",
y = "Ratio",
title = "Year-Over-Year Change in U.S. GDP"
) +
theme_minimal() +
theme(plot.title = element_text(hjust = 0.5))
gdp_ts |>
select(year_over_year) |>
acf()
gdp_ts |>
select(year_over_year) |>
pacf()
```
<!-- Check Your Understanding -->
::: {.callout-tip icon=false title="Check Your Understanding"}
- What process would you use to model the year-over-year GDP ratios?
- Modify the code below to implement your model.
```{r}
#| eval: false
gdp_ma <- gdp_ts |>
model(arima = ARIMA(year_over_year ~ 1 + pdq(0,0,1) + PDQ(0, 0, 0)))
tidy(gdp_ma)
gdp_ma |>
residuals() |>
ACF() |>
autoplot()
```
- What are the values of the model coefficients?
- Based on the acf of the residuals, is the MA model you identified a good fit to the data?
:::
## Small-Group Activity: Fitting an $MA(q)$ Model to the Trade Data (15 min)
#### Vessels Cleared in Foreign Trade for United States
In the homework for Chapter 1 Lesson 5, you explored data on the thousands of net tons cleared in foreign trade for the United States each month from January 1902 to December 1940. The code below computes the year-over-year change in the amount of cargo cleared for trade. This is stored in the variable `ratio`.
```{r}
#| code-fold: true
#| code-summary: "Show the code"
vessels_ts <- rio::import("https://byuistats.github.io/timeseries/data/Vessels_Trade_US.csv") |>
# filter(-comments) |>
mutate(
date = yearmonth(dmy(date)),
ratio = vessels / lag(vessels, 12)
) |>
na.omit() |>
as_tsibble(index = date)
vessels_ts |>
autoplot(.vars = ratio) +
labs(
x = "Month",
y = "Ratio",
title = "Year-Over-Year Change in Net Tons on Vessels Cleared for Trade"
) +
theme_minimal() +
theme(plot.title = element_text(hjust = 0.5))
```
<!-- Check Your Understanding -->
::: {.callout-tip icon=false title="Check Your Understanding"}
Practice applying an $MA(q)$ model using the year-over-year amounts.
- Determine which MA model is most appropriate for these data.
- Fit the model you deem most appropriate.
- Assess the appropriateness of applying your model to the data.
:::
## Homework Preview (5 min)
- Review upcoming homework assignment
- Clarify questions
::: {.callout-note icon=false}
## Download Homework
<a href="https://byuistats.github.io/timeseries/homework/homework_6_1.qmd" download="homework_6_1.qmd"> homework_6_1.qmd </a>
:::
<a href="javascript:showhide('Solutions1')"
style="font-size:.8em;">MA(q) process in terms of the backward shift operator</a>
::: {#Solutions1 style="display:none;"}
\begin{align*}
x_t
&= w_t + \beta_1 w_{t-1} + \beta_2 w_{t-2} + \beta_3 w_{t-3} + \cdots + \beta_{q-1} w_{t-(q-1)} + \beta_q w_{t-q} \\
&= w_t + \beta_1 \mathbf{B} w_t + \beta_2 \mathbf{B}^2 w_t + \beta_3 \mathbf{B}^3 w_t + \cdots + \beta_{q-1} \mathbf{B}^{q-1} w_t + \beta_q \mathbf{B}^{q} w_t \\
&= \left( 1 + \beta_1 \mathbf{B} + \beta_2 \mathbf{B}^2 + \beta_3 \mathbf{B}^3 + \cdots + \beta_{q-1} \mathbf{B}^{q-1} + \beta_q \mathbf{B}^{q} \right) w_t \\
&= \phi_q(\mathbf{B}) w_t
\end{align*}
:::
<a href="javascript:showhide('Solutions2')"
style="font-size:.8em;">Simulating an MA(3) process</a>
::: {#Solutions2 style="display:none;"}
Set the values of the parameters $n$, $\beta_1$, $\beta_2$, and $\beta_3$ in the simulation to the following:
$$
n = 1000, ~~~~~~~~~~~
\beta_1 = -0.7, ~~~~~~~~~~~
\beta_2 = 0.5, ~~~~~~~~~~~
\beta_3 = -0.2
$$
:::
<a href="javascript:showhide('Solutions3')"
style="font-size:.8em;">Class Activity: Fitting an MA(q) Model to GDP Year-Over-Year Ratios</a>
::: {#Solutions3 style="display:none;"}
<!-- Check Your Understanding -->
::: {.callout-tip icon=false title="Check Your Understanding"}
- What process would you use to model the year-over-year GDP ratios?
Based on the acf, an $MA(3)$ model seems most appropriate.
```{r}
#| code-fold: true
#| code-summary: "Show the code"
gdp_ts |>
select(year_over_year) |>
acf()
gdp_ts |>
select(year_over_year) |>
pacf()
```
- Modify the code below to implement your model.
```{r}
#| code-fold: true
#| code-summary: "Show the code"
gdp_ma <- gdp_ts |>
# Changed 1 to a 3 on the next line
model(arima = ARIMA(year_over_year ~ 1 + pdq(0,0,3) + PDQ(0, 0, 0)))
```
- What are the values of the model coefficients?
The values of the coefficients are given in the table below:
```{r}
#| code-fold: true
#| code-summary: "Show the code"
tidy(gdp_ma)
```
- Based on the acf of the residuals, is the MA model you identified a good fit to the data?
```{r}
#| code-fold: true
#| code-summary: "Show the code"
gdp_ma |>
residuals() |>
ACF(var = .resid) |>
autoplot()
```
None of the acf values are significant. The $MA(3)$ model seems appropriate.
```{r}
#| echo: false
coeffs <- tidy(gdp_ma) |>
# filter(term != "constant") |>
select(estimate) |>
pull()
```
We can write the estimated model as:
$$
x_t = `r coeffs[4]` + `r coeffs[1]` \mathbf{B} + `r coeffs[2]` \mathbf{B}^2 + `r coeffs[3]` \mathbf{B}^3
$$
The absolute values of the roots of the right-hand side of this equation are:
```{r}
#| code-fold: true
#| code-summary: "Show the code"
coeffs <- tidy(gdp_ma) |>
# filter(term != "constant") |>
select(estimate) |>
pull()
abs(polyroot(c(coeffs |> tail(1), coeffs |> head(-1))))
```
The model is invertible. (As mentioned [previously](#FittedModelWillBeInvertible), the process by which these are constructed guarantees they will be invertible.)
:::
:::
<a href="javascript:showhide('Solutions4')"
style="font-size:.8em;">Small-Group Activity: Fitting an MA(q) Model to the Trade Data</a>
::: {#Solutions4 style="display:none;"}
```{r}
#| code-fold: true
#| code-summary: "Show the code"
vessels_ts <- rio::import("https://byuistats.github.io/timeseries/data/Vessels_Trade_US.csv") |>
# filter(-comments) |>
mutate(
date = yearmonth(dmy(date)),
ratio = vessels / lag(vessels, 12)
) |>
na.omit() |>
as_tsibble(index = date)
vessels_ts |>
autoplot(.vars = ratio) +
labs(
x = "Month",
y = "Ratio",
title = "Year-Over-Year Change in Net Tons on Vessels Cleared for Trade"
) +
theme_minimal() +
theme(plot.title = element_text(hjust = 0.5))
vessels_ts |>
select(ratio) |>
acf()
vessels_ts |>
select(ratio) |>
pacf()
gdp_ma <- vessels_ts |>
model(arima = ARIMA(ratio ~ 1 + pdq(0,0,12) + PDQ(0, 0, 0)))
tidy(gdp_ma)
gdp_ma |>
residuals() |>
ACF() |>
autoplot()
```
:::