-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathmodel.py
374 lines (325 loc) · 18.2 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
#!/usr/bin/python
from __future__ import absolute_import
import bz2,contextlib
import numpy as np
import sys
import json
import cPickle as pickle
#import simplejson as json
from constants import *
from common.util import Alphabet,ETag,ConstTag
import importlib
from collections import defaultdict
_FEATURE_TEMPLATES_FILE = './feature/basic_abt_feats.templates'
class Model():
"""weights and templates"""
#weight = None
#n_class = None
#n_rel = None
#n_tag = None
indent = " "*4
#feature_codebook = None
#class_codebook = None
#feats_generator = None
def __init__(self,elog=sys.stdout):
self.elog = elog
self.weight = None
self.aux_weight = None
self.avg_weight = None # for store the averaged weights
#self.n_class = n_class
#self.n_rel = n_rel
#self.n_tag = n_tag
self._feats_templates_file = _FEATURE_TEMPLATES_FILE
self._feature_templates_list = []
self._feats_gen_filename = None
self.feats_generator = None
self.token_to_concept_table = defaultdict(set)
self.pp_count_dict = defaultdict(int)
self.total_num_words = 0
self.token_label_set = defaultdict(set)
self.class_codebook = None
self.feature_codebook = None
self.rel_codebook = Alphabet()
self.tag_codebook = {
'Concept':Alphabet(),
'ETag':Alphabet(),
'ConstTag':Alphabet(),
'ABTTag':Alphabet()
}
self.abttag_count = defaultdict(int)
def setup(self,action_type,instances,parser,feature_templates_file=None):
if feature_templates_file:
self._feats_templates_file = feature_templates_file
self.class_codebook = Alphabet.from_dict(dict((i,k) for i,(k,v) in enumerate(ACTION_TYPE_TABLE[action_type])),True)
self.feature_codebook = dict([(i,Alphabet()) for i in self.class_codebook._index_to_label.keys()])
self.read_templates()
#n_rel,n_tag = self._set_rel_tag_codebooks(instances,parser)
n_subclass = self._set_rel_tag_codebooks(instances,parser)
self._set_class_weight(self.class_codebook.size(),n_subclass)
self._set_statistics(instances)
self.output_feature_generator()
def _set_statistics(self,instances):
#pp_count_dict = defaultdict(int)
for inst in instances:
sent = inst.tokens
self.total_num_words += len(sent)
for token in sent:
if token['pos'] == 'IN' and token['rel'] == 'prep':
self.pp_count_dict[token['form'].lower()] += 1
def _set_rel_tag_codebooks(self,instances,parser):
#TODO
self.rel_codebook.add(NULL_EDGE)
self.rel_codebook.add(START_EDGE)
#self.tag_codebook['Concept'].add(NULL_TAG)
for inst in instances:
gold_graph = inst.gold_graph
gold_nodes = gold_graph.nodes
#gold_edges = gold_graph.edges
sent_tokens = inst.tokens
#state = parser.testOracleGuide(inst)
for g,d in gold_graph.tuples():
if isinstance(g,int):
gnode = gold_nodes[g]
g_span_wds = [tok['lemma'] for tok in sent_tokens if tok['id'] in range(gnode.start,gnode.end)]
g_span_ne = sent_tokens[g]['ne']
g_entity_tag = gold_graph.get_node_tag(g)
#if len(g_span_wds) > 1:
# for gwd in g_span_wds:
# self.token_to_concept_table[gwd].add(g_entity_tag)
if g_span_ne not in ['O','NUMBER']: # is name entity
self.token_to_concept_table[g_span_ne].add(g_entity_tag)
self.token_to_concept_table[','.join(g_span_wds)].add(g_entity_tag)
if isinstance(g_entity_tag,ETag):
self.tag_codebook['ETag'].add(g_entity_tag)
elif isinstance(g_entity_tag,ConstTag):
self.tag_codebook['ConstTag'].add(g_entity_tag)
else:
self.tag_codebook['Concept'].add(g_entity_tag)
else:
g_entity_tag = gold_graph.get_node_tag(g)
self.tag_codebook['ABTTag'].add(g_entity_tag)
self.abttag_count[g_entity_tag] += 1
'''
elif g in state.gold_graph.abt_node_table and isinstance(state.gold_graph.abt_node_table[g],int): # post aligned
gnode = state.A.nodes[state.gold_graph.abt_node_table[g]]
g_span_wds = [tok['lemma'] for tok in sent_tokens if tok['id'] in range(gnode.start,gnode.end)]
g_span_ne = sent_tokens[state.gold_graph.abt_node_table[g]]['ne']
g_entity_tag = gold_graph.get_node_tag(g)
if g_span_ne not in ['O','NUMBER']: # is name entity
self.token_to_concept_table[g_span_ne].add(g_entity_tag)
self.token_to_concept_table[','.join(g_span_wds)].add(g_entity_tag)
if isinstance(g_entity_tag,ETag):
self.tag_codebook['ETag'].add(g_entity_tag)
elif isinstance(g_entity_tag,ConstTag):
self.tag_codebook['ConstTag'].add(g_entity_tag)
else:
self.tag_codebook['Concept'].add(g_entity_tag)
'''
if isinstance(d,int):
dnode = gold_nodes[d]
d_span_wds = [tok['lemma'] for tok in sent_tokens if tok['id'] in range(dnode.start,dnode.end)]
d_span_ne = sent_tokens[d]['ne']
d_entity_tag = gold_graph.get_node_tag(d)
#if len(d_span_wds) > 1:
# for dwd in d_span_wds:
# self.token_to_concept_table[dwd].add(d_entity_tag)
if d_span_ne not in ['O','NUMBER']:
self.token_to_concept_table[d_span_ne].add(d_entity_tag)
self.token_to_concept_table[','.join(d_span_wds)].add(d_entity_tag)
if isinstance(d_entity_tag,ETag):
self.tag_codebook['ETag'].add(d_entity_tag)
elif isinstance(d_entity_tag,ConstTag):
self.tag_codebook['ConstTag'].add(d_entity_tag)
else:
self.tag_codebook['Concept'].add(d_entity_tag)
#self.tag_codebook.add(d_entity_tag)
else:
d_entity_tag = gold_graph.get_node_tag(d)
self.tag_codebook['ABTTag'].add(d_entity_tag)
self.abttag_count[d_entity_tag] += 1
'''
elif d in state.gold_graph.abt_node_table and isinstance(state.gold_graph.abt_node_table[d],int): # post aligned
dnode = state.A.nodes[state.gold_graph.abt_node_table[d]]
d_span_wds = [tok['lemma'] for tok in sent_tokens if tok['id'] in range(dnode.start,dnode.end)]
d_span_ne = sent_tokens[state.gold_graph.abt_node_table[d]]['ne']
d_entity_tag = gold_graph.get_node_tag(d)
if d_span_ne not in ['O','NUMBER']: # is name entity
self.token_to_concept_table[d_span_ne].add(d_entity_tag)
self.token_to_concept_table[','.join(d_span_wds)].add(d_entity_tag)
if isinstance(d_entity_tag,ETag):
self.tag_codebook['ETag'].add(d_entity_tag)
elif isinstance(d_entity_tag,ConstTag):
self.tag_codebook['ConstTag'].add(d_entity_tag)
else:
self.tag_codebook['Concept'].add(d_entity_tag)
'''
g_edge_label = gold_graph.get_edge_label(g,d)
#if g_span_ne not in ['O','NUMBER']:
# self.token_label_set[g_span_ne].add(g_edge_label)
#self.token_label_set[','.join(g_span_wds)].add(g_edge_label)
self.rel_codebook.add(g_edge_label)
# reset
# inst.gold_graph.abt_node_table = {}
#n_rel = [1]*self.class_codebook.size()
#n_tag = [1]*self.class_codebook.size()
n_subclass = [1]*self.class_codebook.size()
#self._pruning_abttag()
for k,v in self.class_codebook._index_to_label.items():
if v in ACTION_WITH_TAG:
#n_tag[k] = reduce(lambda x,y: x+y, map(lambda z: self.tag_codebook[z].size(), self.tag_codebook.keys()))
n_subclass[k] = self.tag_codebook['ABTTag'].size()
if v in ACTION_WITH_EDGE:
#n_rel[k] = self.rel_codebook.size()
n_subclass[k] = self.rel_codebook.size()
#return n_rel,n_tag
return n_subclass
def _pruning_abttag(self,threshold=8):
pruned_abttag_codebook = Alphabet()
for v in self.tag_codebook['ABTTag'].labels():
if self.abttag_count[v] >= 8:
pruned_abttag_codebook.add(v)
self.tag_codebook['ABTTag'] = pruned_abttag_codebook
def _set_class_weight(self,n_class,n_subclass=None,init_feature_dim = 10**5):
#if n_rel == None:
# n_rel = [1]*n_class
#assert len(n_rel) == n_class
#self.weight = [np.zeros(shape = (init_feature_dim,nt,nr),dtype=WEIGHT_DTYPE) for nr,nt in zip(n_rel,n_tag)]
#self.aux_weight = [np.zeros(shape = (init_feature_dim,nt,nr),dtype=WEIGHT_DTYPE) for nr,nt in zip(n_rel,n_tag)]
#self.avg_weight = [np.zeros(shape = (init_feature_dim,nt,nr),dtype=WEIGHT_DTYPE) for nr,nt in zip(n_rel,n_tag)]
self.weight = [np.zeros(shape = (init_feature_dim,ns),dtype=WEIGHT_DTYPE) for ns in n_subclass]
self.aux_weight = [np.zeros(shape = (init_feature_dim,ns),dtype=WEIGHT_DTYPE) for ns in n_subclass]
self.avg_weight = [np.zeros(shape = (init_feature_dim,ns),dtype=WEIGHT_DTYPE) for ns in n_subclass]
def read_templates(self):
ff_name = self._feats_templates_file
for line in open(ff_name,'r'):
line = line.strip()
if not line:
pass
elif line.startswith('#'):
pass
else:
elements = line.split()
#elements.extend(['tx'])
template = "'%s=%s' %% (%s)"%('&'.join(elements),'%s_'*len(elements),','.join(elements))
self._feature_templates_list.append((template,elements))
def output_feature_generator(self):
"""based on feature autoeval method in (Huang,2010)'s parser"""
import time
self._feats_gen_filename = 'feats_gen_'+self._feats_templates_file.split('/')[-1].split('.')[0]#str(int(time.time()))
output = open('./temp/'+self._feats_gen_filename+'.py','w')
output.write('#generated by model.py\n')
output.write('from constants import *\n')
output.write('def generate_features(state,action):\n')
output.write(Model.indent+'s0,b0,a0=state.get_feature_context_window(action)\n')
element_set = set([])
definition_str = Model.indent+'feats=[]\n'
append_feats_str = ''
definition_str += Model.indent+"act_idx = state.model.class_codebook.get_index(action['type'])\n"
definition_str += Model.indent+"tx = action['tag'] if 'tag' in action else EMPTY\n"
#definition_str += Model.indent+"txv = len(tx.split('-'))==2 if tx is not EMPTY else EMPTY\n"
#definition_str += Model.indent+"lx = action['edge_label'] if 'edge_label' in action else EMPTY\n"
#definition_str += Model.indent+"print state.model.class_codebook._label_to_index\n"
#print self._feature_templates_list
for template,elements in self._feature_templates_list:
for e in elements: # definition
if e not in element_set:
sub_elements = e.split('_')
if len(sub_elements) == 2:
definition_str += "%s%s=%s['%s'] if %s else EMPTY\n" % (Model.indent,e,sub_elements[0],FEATS_ABBR[sub_elements[1]],sub_elements[0])
elif len(sub_elements) == 3:
definition_str += "%s%s=%s['%s']['%s'] if %s and %s['%s'] else EMPTY\n" % (Model.indent,e,sub_elements[0],FEATS_ABBR[sub_elements[1]],FEATS_ABBR[sub_elements[2]],sub_elements[0],sub_elements[0],FEATS_ABBR[sub_elements[1]])
else:
pass
element_set.add(e)
else:
pass
append_feats_str += "%sif [%s] != %s*[None]:feats.append(%s)\n" % (Model.indent,','.join(elements),len(elements),template)
#append_feats_str += "%sfeats.append(%s)\n" % (Model.indent,template)
definition_str += "%sdist1=abs(s0['id']-b0['id']) if b0 and b0 is not ABT_TOKEN and s0 is not ABT_TOKEN else EMPTY\n"%(Model.indent)
definition_str += "%sif dist1 > 10: dist1=10\n"%(Model.indent)
definition_str += "%sdist2=abs(a0['id']-b0['id']) if b0 and a0 and b0 is not ABT_TOKEN and a0 is not ABT_TOKEN else EMPTY\n"%(Model.indent)
definition_str += "%sif dist2 > 10: dist2=10\n"%(Model.indent)
#definition_str += "%seqfrmset=s0['eqfrmset']\n"%(Model.indent)
output.write(definition_str)
output.write(append_feats_str)
output.write('%sreturn feats' % Model.indent)
output.close()
#sys.path.append('/temp/')
print "Importing feature generator!"
self.feats_generator = importlib.import_module('temp.'+self._feats_gen_filename).generate_features
def toJSON(self):
print 'Converting model to JSON'
print 'class size: %s \nrelation size: %s \ntag size: %s'%(self.class_codebook.size(),self.rel_codebook.size(),map(lambda x:'%s->%s '%(x,self.tag_codebook[x].size()),self.tag_codebook.keys()))
print 'feature codebook size: %s' % (','.join(('%s:%s')%(i,f.size()) for i,f in self.feature_codebook.items()))
print 'weight shape: %s' % (','.join(('%s:%s')%(i,w.shape) for i,w in enumerate(self.avg_weight)))
print 'token to concept table: %s' % (len(self.token_to_concept_table))
model_dict = {
'_feature_templates_list': self._feature_templates_list,
'_feats_gen_filename':self._feats_gen_filename,
#'weight':[w.tolist() for w in self.weight],
#'aux_weight':[axw.tolist() for axw in self.aux_weight],
'avg_weight':[agw.tolist() for agw in self.avg_weight],
'token_to_concept_table': dict([(k,list(v)) for k,v in self.token_to_concept_table.items()]),
'class_codebook':self.class_codebook.to_dict(),
'feature_codebook':self.feature_codebook.to_dict(),
'rel_codebook':self.rel_codebook.to_dict(),
'tag_codebook':dict([(k,self.tag_codebook[k].to_dict()) for k in self.tag_codebook])
}
return model_dict
def save_model(self,model_filename):
#pickle.dump(self,open(model_filename,'wb'),pickle.HIGHEST_PROTOCOL)
print >> self.elog, 'Model info:'
print >> self.elog,'class size: %s \nrelation size: %s \ntag size: %s'%(self.class_codebook.size(),self.rel_codebook.size(),map(lambda x:'%s->%s '%(x,self.tag_codebook[x].size()),self.tag_codebook.keys()))
print >> self.elog,'feature codebook size: %s' % (','.join(('%s:%s')%(i,f.size()) for i,f in self.feature_codebook.items()))
#print 'weight shape: %s' % (self.avg_weight.shape)
print >> self.elog,'weight shape: %s' % (','.join(('%s:%s')%(i,w.shape) for i,w in enumerate(self.avg_weight)))
print >> self.elog,'token to concept table: %s' % (len(self.token_to_concept_table))
weight = self.weight
aux_weight = self.aux_weight
#avg_weight = self.avg_weight
self.weight = None
self.aux_weight = None
#self.avg_weight = None
#try:
# np.save(open(model_filename+'.weight', 'wb'),avg_weight)
#except SystemError as e:
# print >> sys.stderr, 'Saving model error:', e
# pass
try:
#with contextlib.closing(bz2.BZ2File(model_filename, 'wb')) as f:
with open(model_filename, 'wb') as f:
pickle.dump(self,f,pickle.HIGHEST_PROTOCOL)
except:
print >> sys.stderr, 'Saving model error', sys.exc_info()[0]
#raise
pass
self.weight = weight
self.aux_weight = aux_weight
#self.avg_weight = avg_weight
@staticmethod
def load_model(model_filename):
#with contextlib.closing(bz2.BZ2File(model_filename, 'rb')) as f:
with open(model_filename, 'rb') as f:
model = pickle.load(f)
# deal with module name conflict
#tmp = sys.path.pop(0)
#model.avg_weight = np.load(open(model_filename+'.weight', 'rb'))
#sys.path.insert(0,tmp)
return model
#return pickle.load(open(model_filename,'rb'))
'''
model_dict = json.load(open(model_filename,'rb'))
model_instance = Model()
model_instance._feature_templates_list = model_dict['_feature_templates_list']
model_instance._feats_gen_filename = model_dict['_feats_gen_filename']
model_instance.feats_generator = importlib.import_module('temp.'+model_instance._feats_gen_filename).generate_features
#model_instance.weight = [np.array(w) for w in model_dict['weight']]
#model_instance.aux_weight = [np.array(axw) for axw in model_dict['aux_weight']]
model_instance.avg_weight = [np.array(agw) for agw in model_dict['avg_weight']]
model_instance.token_to_concept_table = defaultdict(set,[(k,set(v)) for k,v in model_dict['token_to_concept_table'].items()])
model_instance.class_codebook = Alphabet.from_dict(model_dict['class_codebook'])
model_instance.feature_codebook = Alphabet.from_dict(model_dict['feature_codebook'])
model_instance.rel_codebook = Alphabet.from_dict(model_dict['rel_codebook'])
model_instance.tag_codebook = Alphabet.from_dict(model_dict['tag_codebook'])
return model_instance
'''