-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunused proofs etc.tex
37 lines (35 loc) · 1.75 KB
/
unused proofs etc.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
%It is well known that this line bundle is ample, We see ampleness by the an argument in \cite{}.
%\begin{lemma}
%For sufficiently large \(d\), \(L_d\) is ample
%\end{lemma}
%\begin{proof}
%Since \(L\) is ample then, for some \(d>0\), \(L^{\otimes d} \otimes \mathcal{J}_V\) is globally generated. Consider the linear system \(\Sigma \), defined as the image of the natural map \(H^0(L^{\otimes d} \otimes \mathcal{J}_V) \to H^0(L^{\otimes d})\), which has base locus \(V\). Let \(\varphi: X \to \PP^N\) be the associated rational map. We may identify \(W\) as the graph of \(\varphi\) in \(X \times \PP^N\). Then
%\[
%p_2^* \O(1) |_W = f^*L \otimes \O(-E),
%\]
%and so, for \(d\) large enough such that \(L^{\otimes d}\) is very ample, we have:
%\[
%L_{d+1} = f^*L^{\otimes d+1} \otimes \O(-E) \cong L^{\otimes d} \otimes p_2^* \O(1) |_W \cong p_1^* L^{\otimes d} \otimes f^* \O(1) |_W.
%\]
%\end{proof}
\include{preamble}
\begin{document}
\begin{figure}[H]
\tdplotsetmaincoords{70}{130}{}
\begin{tikzpicture}[%
tdplot_main_coords,scale=1,
>=stealth
]
\draw[fill=gray,opacity=1] (-3,0,1) -- (-2,1,1) -- (0,1,0) -- (0,0,-1/2) -- cycle;
\draw[fill=gray,opacity=1] (-3,0,1) -- (0,-3,1) -- (0,0,-1/2) -- cycle;
\draw[fill=gray,opacity=1] (3,0,1) -- (0,-3,1) -- (0,0,-1/2) -- cycle;
\draw[thick,dotted] (0,0,0) -- (0,0,1);
\draw[thick,->,dotted] (0,0,0) -- (3,0,0);
\draw[thick,->,dotted] (0,0,0) -- (0,2,0);
\draw[fill=gray,opacity=0.7] (3,0,1) -- (2,1,1) -- (0,1,0) -- (0,0,-1/2) -- cycle;
\draw[fill=gray,opacity=0.7] (-3,0,1) -- (0,-3,1) -- (3,0,1) -- (2,1,1) -- (-2,1,1) -- cycle;
\draw[fill=gray,opacity=0.7] (2,1,1) -- (0,1,0) -- (-2,1,1) -- cycle;
\draw[thick,->,dotted] (0,0,1) -- (0,0,2);
\end{tikzpicture}
\end{figure}
\end{document}