-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathadapt.py
executable file
·270 lines (237 loc) · 10.4 KB
/
adapt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import argparse
import yaml
import os
import torch
import torch.optim as optim
import random
import time
import numpy as np
import sys
import copy
from torch import nn
from utils import *
import models
from datareader import txtload
def configure_model(model):
"""Configure model for freezing batch_norm."""
model.eval()
return model
# test result of statedict on dataset
def test(statedict, dataset, outfile, epoch=0):
"""Test model on dataset.
Args:
statedict (dict): Model state_dict.
dataset (torch.utils.data.Dataloader): Dataset to test on.
outfile (file): File to write results to.
epoch (int): Epoch number.
"""
global best_result_dict
net = models.GazeRes(args.backbone)
net.to(device)
configure_model(net)
net.load_state_dict(statedict, strict=False)
accs = 0
count = 0
with torch.no_grad():
for j, (data, label) in enumerate(dataset):
img = data["face"].to(device)
names = data["name"]
img = {"face": img}
gts = label.to(device)
gazes, _ = net(img)
accs += torch_angular_error(gazes, gts) * gts.shape[0]
count += gts.shape[0]
avg_acc = accs / count
loger = f"[{epoch}] Total Num: {count}, avg: {avg_acc:.3f} \n"
print(loger)
outfile.write(loger)
outfile.flush()
return avg_acc
def test_ensemble(nets, dataset, outfile, epoch=0):
"""
Test average performance of models(nets) on dataset.
Args:
nets (list): List of models to test.
dataset (torch.utils.data.Dataloader): Dataset to test on.
outfile (file): File to write results to.
epoch (int): Epoch number.
"""
for net in nets:
net.eval()
accs = 0
count = 0
with torch.no_grad():
for j, (data, label) in enumerate(dataset):
img = data["face"].to(device)
names = data["name"]
img = {"face": img}
gts = label.to(device)
avg_gazes = 0
for net in nets:
gazes, _ = net(img)
avg_gazes = avg_gazes + gazes
avg_gazes = avg_gazes / len(nets)
accs += torch_angular_error(gazes, gts) * gts.shape[0]
count += gts.shape[0]
avg_acc = accs / count
loger = f"[{epoch}] Total Num: {count}, avg: {avg_acc:.3f} \n"
print(loger)
outfile.write(loger)
return avg_acc
def train_test(train_data, test_data, iteration, adapt_loss_op, outfile):
"""
Train and test model on dataset.
Args:
train_data (torch.utils.data.Dataloader): Dataset to train on.
test_data (torch.utils.data.Dataloader): Dataset to test on.
nets (list): List of models to train.
nets_ema (list): List of EMA models to train.
iteration (int): Number of iterations to train.
"""
# Initialize models
for i in range(len(nets)):
nets[i].load_state_dict(nets_init[i].state_dict())
nets_ema[i].load_state_dict(nets_init[i].state_dict())
configure_model(nets[i])
configure_model(nets_ema[i])
# Optimizer
optimizer = optim.Adam(params, lr=args.lr, betas=(0.9, 0.95))
for i in range(iteration):
gazes = torch.Tensor().to(device)
gazes_ema = torch.Tensor().to(device)
# Randomly sample 20 indices from training data
indices = random.sample(range(train_data["face"].shape[0]), 20)
img = train_data["face"][indices]
img = {"face": img}
for k in range(len(nets)):
gaze, feature = nets[k](img)
gazes = torch.cat((gazes, gaze.reshape(-1, 2, 1)), 2)
gaze_ema, feature = nets_ema[k](img)
gazes_ema = torch.cat((gazes_ema, gaze_ema.reshape(-1, 2, 1)), 2)
outlier_loss = adapt_loss_op(gazes, gazes_ema)
optimizer.zero_grad()
outlier_loss.backward()
optimizer.step()
for k in range(len(nets)):
update_ema_params(nets[k], nets_ema[k], 0.99, i)
# print(outlier_loss.item())
outfile.write("Outlier_loss: %.4f \n"%(outlier_loss.item()))
outfile.flush()
statedict = mean_models_params(nets)
error = test(statedict, test_data, outfile, i)
return error
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Domain Adaptation')
parser.add_argument('--seed', type=int, default=1, help='random seed')
parser.add_argument('--backbone', type=str, default='res18', help='backbone')
parser.add_argument('--batch_size', type=int, default=20, help='batch size')
parser.add_argument('--num_models', type=float, default=10, help='number of pretrained models(>1)')
parser.add_argument('--iteration', type=int, default=50, help='iteration for adaptation')
parser.add_argument('--shuffle', type=bool, default=True, help='shuffle adaptation dataset')
parser.add_argument('--target', type=str, default='mpii', help='target dataset, mpii/edp/capture')
parser.add_argument('--source', type=str, default='eth', help='source dataset, eth/gaze360')
parser.add_argument('--savepath', type=str, default="", help='save path for logs and models')
parser.add_argument('-l', '--loss', default= "uncertain_wpseudo", help="the loss type for adapt")
parser.add_argument('-lp', '--lamda_pseudo',type=float, default= 0.0001, help="the weight for pseudo loss")
parser.add_argument('-n', '--num_experiments', default= 100, help="the number of experiments")
parser.add_argument('--lr', type=float, default=2e-5, help="the learning rate")
parser.add_argument('--ckpt_path',default="checkpoints/xgaze", help="the path of source model ckpts")
# use config file
# ... parse other arguments ...
args = parser.parse_args()
# Load configuration
config = yaml.load(open("datapath.yaml"), Loader=yaml.FullLoader)
imagepath_target = config[args.target]["image"]
labelpath_target = config[args.target]["label"]
# Set random seed
seed_everything(args.seed)
# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Read target data
if os.path.isdir(labelpath_target):
folder_target = os.listdir(labelpath_target)
folder_target.sort()
else:
folder_target = [os.path.basename(labelpath_target)]
labelpath_target = os.path.dirname(labelpath_target)
labelpath_list = [os.path.join(labelpath_target, j) for j in folder_target]
dataset_target_for_adaptation = txtload(labelpath_list, imagepath_target, args.batch_size,
shuffle=args.shuffle, num_workers=4, header=True, target=args.target)
dataset_target = txtload(labelpath_list, imagepath_target, 256,
shuffle=False, num_workers=8, header=True, target = args.target)
# makdir for savepath
savepath = os.path.join("adapt_logs", args.savepath, f"batch_size={args.batch_size}_iteration={args.iteration}_lr={args.lr}_loss={args.loss}_shuffle={args.shuffle}")
if args.loss == "uncertain_pseudo" or args.loss == "uncertain_wpseudo":
savepath = os.path.join("adapt_logs", args.savepath, f"batch_size={args.batch_size}_iteration={args.iteration}_lamda_pseudo={args.lamda_pseudo}_lr={args.lr}_loss={args.loss}_shuffle={args.shuffle}")
if not os.path.exists(savepath):
os.makedirs(savepath, exist_ok = True)
# Model initialization
params = []
loc = "cuda:0"
device = torch.device(loc if torch.cuda.is_available() else "cpu")
ckpt_path = args.ckpt_path
if os.path.isdir(ckpt_path):
ckpt_list = os.listdir(ckpt_path)
# sort ckpt_list
ckpt_list.sort(key=lambda x: int(x.split("=")[1].split(".")[0]),reverse=True)
pre_models = [os.path.join(ckpt_path, j) for j in ckpt_list]
elif os.path.isfile(ckpt_path):
pre_models = [ckpt_path]
else:
raise ValueError("No such ckpt path")
n = len(pre_models)
n = min(n,args.num_models)
nets = [models.GazeRes(args.backbone) for _ in range(n)]
nets_ema = [models.GazeRes(args.backbone) for _ in range(n)]
nets_init = [models.GazeRes(args.backbone) for _ in range(n)]
for i in range(n):
print(pre_models[i])
pretrain = torch.load(pre_models[i], map_location=loc)
statedict = pretrain if "state_dict" not in pretrain else pretrain["state_dict"]
nets[i].to(device)
nets[i].load_state_dict(statedict)
nets[i].eval()
nets_ema[i].to(device)
nets_ema[i].load_state_dict(statedict)
nets_ema[i].eval()
nets_init[i].to(device)
nets_init[i].load_state_dict(statedict)
nets_init[i].eval()
for value in nets[i].parameters():
if value.requires_grad:
params += [{'params': [value]}]
for param in nets_ema[i].parameters():
param.detach_()
# Training loop
errors = AverageMeter()
std_list = []
iteration = args.iteration
adapt_loss_op = build_adaptation_loss(args.loss, args.lamda_pseudo)
length_target = len(dataset_target_for_adaptation)
with open(os.path.join(savepath, "train.log"), "w") as outfile:
with open(os.path.join(savepath, "loss.log"), "w") as lossfile:
for j, (data, label) in enumerate(dataset_target_for_adaptation):
if j == 0:
statedict = mean_models_params(nets)
test(statedict, dataset_target, outfile, 0)
outfile.write(" \n")
if j > args.num_experiments:
break
label = label.to(device)
for k, v in data.items():
if torch.is_tensor(v):
data[k] = v.to(device)
gaze_error = train_test(data, dataset_target, iteration, adapt_loss_op, lossfile)
errors.update(gaze_error.item(), label.size(0))
std_list += [gaze_error.item()]
timeend = time.time()
log = f"[{j}/{length_target}] " \
f"batch_size: {args.batch_size} " \
f"iteration: {args.iteration} " \
f"avg_loss:{errors.avg:.4f} " \
f"gaze_loss:{errors.val:.4f} "
print(log)
outfile.write(log + "\n")
sys.stdout.flush()
outfile.flush()
outfile.write("std = %.4f"%(np.std(std_list)) + "\n")