-
Notifications
You must be signed in to change notification settings - Fork 3
/
extractor.py
220 lines (180 loc) · 7.15 KB
/
extractor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
# Extractor extracts a column from a csv file
import csv
import nltk
import perceptron
import random
import time
import re
class Main():
# Open a file
file1 = csv.reader(open('DataCSV.csv', 'rb'), delimiter=',', quotechar='"')
# Initialize dictionaries
sentence = {}
sentiment = {}
corpus = {}
probWord = {}
probSent = {}
# Perceptron used for machine learning
p = perceptron.Perceptron()
# Initialize lists
trainSet = []
testSet = []
validationSet = []
# The distribution of all the data over train-, test- and validationset
distribution = (0.7, 0.1, 0.2)
# The number of sentences
num_sentences = 0
def __init__(self, iterations = 10):
# Reset totals
acc = 0
pre = 0
# Get current time
t = time.time()
#ngrams
n = 3
corpus = {}
# Load the sentences and sentiments from file
self.initializeCorpus( n )
for i in range( iterations ):
print "--- iteration", i + 1, "of", iterations, "---"
# Reset dictionaries
self.probWord = {}
self.probSent = {}
self.p.reset()
self.trainSet = []
self.testSet = []
self.validationSet = []
# Go through the steps
self.makeCorpus( n )
self.trainPerceptron( n )
# Retrieve results
result = self.printResults()
# Add to the totals
acc += result[0]
pre += result[1]
# Average results and print
print 'Accuracy , averaged: ', acc / float(iterations)
print 'Precision, averaged: ', pre / float(iterations)
print 'Time taken for', iterations, 'iterations: ', time.time()- t
def initializeCorpus(self, n, blogs=False):
self.sentence = {}
self.sentiment = {}
# Initialize counter
i = 0
# Create corpus and count word frequencies
self.corpus = {}
print 'Creating corpus with ', n , '- grams.'
# Collect sentences and sentiments
for entry in self.file1:
# Do not include header
if i == 0:
i+=1
continue
# Check for blogposts
if not blogs:
if int(entry[3]) != 3:
continue
# The actual message is the 9th attribute, sentiment is the 4th
curSent = re.sub('\||#|:|;|RT|@\w+|\**', '', entry[9])
sent = float(entry[4])
self.sentence[i - 1] = curSent
self.sentiment[i - 1] = sent
# Tokenize the sentence
tk_sent = nltk.tokenize.word_tokenize( curSent )
# Iterate over every n tokens
for j in range(len(tk_sent)-(n-1)):
# token is now a uni/bi/tri/n-gram instead of a token
token = tuple(tk_sent[j:j+n])
if token in self.corpus:
if sent != 0:
self.corpus[token] = self.corpus[token][0] + 1, self.corpus[token][1] + 1
else:
self.corpus[token] = self.corpus[token][0] + 1, self.corpus[token][1]
else:
if sent != 0:
self.corpus[token] = 1, 1
else:
self.corpus[token] = 1, 0
# Stop at 10000
i += 1
if ( i == 10000 ):
break
# Set the number of sentences
self.num_sentences = i
print 'Number of sentences =', self.num_sentences
def makeCorpus(self, n):
for i in range(1,self.num_sentences):
# Assign at random to train, test or validation set
r = random.random()
if ( r < self.distribution[0] ):
self.trainSet.append(i-1)
else:
self.testSet.append(i-1)
print 'Calculating unigram probability'
self.probWord = {}
# Corpus created, calculate words probability of sentiment based on frequency
for i in self.trainSet:
tk_sent = nltk.tokenize.word_tokenize( self.sentence[i] )
p = 0
# Iterate over every n tokens
for j in range(len(tk_sent)-(n-1)):
# token is now a uni/bi/tri/n-gram instead of a token
token = tuple(tk_sent[j:j+n])
self.probWord[token] = float(self.corpus[token][1]) / self.corpus[token][0]
# print token, ' || ',corpus[token][1],' / ',corpus[token][0],' = ', probWord[token], '\n'
p = p + self.probWord[token]
self.probSent[i] = p / float(len(tk_sent)) # to be extra certain intdiv does not occur
def trainPerceptron(self, n):
print 'Training perceptron'
ssv = [x != 0 for x in self.sentiment.values()]
trainingSet = {}
for i in self.trainSet:
trainingSet[(self.probSent[i],)] = ssv[i]
self.p.train(trainingSet)
print 'Found threshold: ', self.p.threshold / self.p.weights[0]
print 'Testing perceptron'
# Calculate probability for test sentences
for i in self.testSet:
p = 0
tk_sent = nltk.tokenize.word_tokenize( self.sentence[i] )
# Iterate over every n tokens
for j in range(len(tk_sent)-(n-1)):
# token is now a uni/bi/tri/n-gram instead of a token
token = tuple(tk_sent[j:j+n])
try:
p = p + self.probWord[token]
except:
# If word does not occur in corpus, ignore for now
# (can try katz backoff later?)
pass
# Store the probability in dictionary
self.probSent[i] = p / float(len(tk_sent)) # to be extra certain intdiv does not occur
# print i, 'PROB', self.probSent[i], 'SENT', self.sentiment[i]
def printResults(self):
t = self.p.threshold / self.p.weights[0]
confusion = {}
confusion["tp"] = 0
confusion["tn"] = 0
confusion["fp"] = 0
confusion["fn"] = 0
for i in self.testSet:
if self.probSent[i] > t:
if self.sentiment[i] == 0:
confusion["fp"] += 1
print self.sentence[i]
else:
confusion["tp"] += 1
if self.probSent[i] < t:
if self.sentiment[i] == 0:
confusion["tn"] += 1
else:
confusion["fn"] += 1,
print self.sentence[i]
# print 'Results for test set: '
# print confusion
acc = float(confusion["tp"] + confusion["tn"]) / (confusion["tp"] + confusion["tn"] + confusion["fp"] + confusion["fn"])
# print 'accuracy = ', acc
pre = float(confusion["tp"]) / (confusion["tp"] + confusion["fp"] )
# print 'precision = ', pre
return (acc, pre)
m = Main(10)