-
Notifications
You must be signed in to change notification settings - Fork 3
/
main.py
531 lines (426 loc) · 16.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
# import nltk
import csv
import nltk
import perceptron
import random
import time
import re
from svmutil import *
class Main():
# Open a file
file1 = csv.reader(open('DataCSV.csv', 'rb'), delimiter=',', quotechar='"')
# Initialize dictionaries
sentence = {}
sentiment = {}
corpus = {}
probWord = {}
probSent = {}
wordVectors = {}
# Perceptron used for machine learning
p = perceptron.Perceptron()
# Initialize lists
trainSet = []
testSet = []
validationSet = []
bagOfWords = []
# The distribution of all the data over train-, test- and validationset
distribution = (0.7, 0.3)
# The number of sentences
num_sentences = 0
def __init__(self):
# Choose machine learning method
# self.singleInputPerceptron()
# self.multiInputPerceptron()
self.supportVectorMachine()
#self.testtokenize()
#'''
# Machine learning methods:
#'''
def singleInputPerceptron(self, iterations=10):
# Reset totals
acc = 0
pre = 0
# Get current time
t = time.time()
# The n for the n-grams
n = 3
# Load the sentences and sentiments from file
self.initializeCorpus( n, 10000 )
for i in range( iterations ):
print "--- iteration", i + 1, "of", iterations, "---"
# Reset dictionaries
self.probWord = {}
self.probSent = {}
self.p.reset()
self.trainSet = []
self.testSet = []
self.validationSet = []
# Go through the steps
self.makeCorpus( n )
self.trainSingleInputPerceptron( n )
# Retrieve results
result = self.printResults()
# Add to the totals
acc += result[0]
pre += result[1]
# Average results and print
print 'Accuracy , averaged: ', acc / float(iterations)
print 'Precision, averaged: ', pre / float(iterations)
print 'Time taken for', iterations, 'iterations: ', time.time()- t
def multiInputPerceptron(self):
# Load the sentences and sentiments from file
self.initializeCorpus( 1 )
# Get current time
t = time.time()
# Go through the steps
self.makeCorpus( 1 )
self.createWordVectors()
self.calcProbability()
self.trainMultiInputPerceptron()
self.testMultiInputPerceptron()
print 'Time taken: ', time.time() - t
def supportVectorMachine(self,c=10):
# Get current time
t = time.time()
self.initializeCorpus( 1, 400 )
self.makeCorpus( 1 )
self.createWordVectors()
# Create file with data
f = open('./SVM_data.txt', 'w')
# Create the classes vector
n = 0
for i in self.trainSet:
if self.sentiment[i] != 0:
f.write('+1')
else:
f.write('-1')
k = 0
for j in self.wordVectors[i]:
f.write(' {0}:{1}'.format(k,int(j)))
k += 1
f.write('\n')
n += 1
f.close()
print n, 'lines written'
# Train the model
print 'Creating SVM problem'
y, x = svm_read_problem('./SVM_data.txt')
print 'Training SVM'
m = svm_train(y,x, '-c 10')
# Testing the model
print 'Testing the SVM'
f = open('./SVM_test.txt', 'w')
real_answer = []
# Create the classes vector
for i in self.testSet:
if self.sentiment[i] != 0:
f.write('+1')
real_answer.append(1)
else:
f.write('-1')
real_answer.append(-1)
k = 0
for j in self.wordVectors[i]:
f.write(' {0}:{1}'.format(k,int(j)))
k += 1
f.write('\n')
f.close()
y1,x1 = svm_read_problem('./SVM_test.txt')
p_label, p_acc, p_val = svm_predict(y1, x1, m)
print 'Accuracy and mean squared error: {1}'.format(p_label,p_acc)
print 'Time taken: ', time.time() - t
print 'Validating results'
confusion = {}
confusion['tp'] = 0
confusion['tn'] = 0
confusion['fp'] = 0
confusion['fn'] = 0
for x,y in zip(p_label,real_answer):
if x == 1:
if y == -1:
confusion['fp'] += 1
else:
confusion['tp'] += 1
else:
if y == -1:
confusion['tn'] += 1
else:
confusion['fn'] += 1
# Print results
print 'Results for test set: '
print confusion
try:
acc = float(confusion['tp'] + confusion['tn']) / (confusion['tp'] + confusion['tn'] + confusion['fp'] + confusion['fn'])
except:
acc = 0
print 'accuracy = ', acc
try:
pre = float(confusion['tp']) / (confusion['tp'] + confusion['fp'] )
except:
pre = 0
print 'precision = ', pre
#'''
# Corpus methods
#'''
def tokenize(self, sentence):
#important syntax
sentence = sentence.replace(':)', " blijesmiley ")
sentence = sentence.replace(':(', " zieligesmiley ")
sentence = sentence.replace('!', " ! ")
sentence = sentence.replace('?', " ? ")
#deleted expressions
sentence = re.sub(r'\.|\,|\[|\]|'s|\||#|:|;|RT|\(|\)|@\w+|\**', '', sentence)
sentence = re.sub(' +',' ', sentence)
tokens = sentence.split(' ')
return tokens
def testtokenize(self, max_num = 10,tweet_only=True):
self.sentence = {}
self.sentiment = {}
# Initialize counter
i = 0
# Create corpus and count word frequencies
self.corpus = {}
print 'Creating corpus '
# Collect sentences and sentiments
for entry in self.file1:
# Do not include header
if i == 0:
i+=1
continue
# Check for tweets
if tweet_only:
if int(entry[3]) != 3:
continue
# The actual message is the 9th attribute, sentiment is the 4th
curSent = entry[9]
sent = float(entry[4])
self.sentence[i - 1] = curSent
self.sentiment[i - 1] = sent
# Tokenize the sentence
# Stop at 10000
i += 1
if ( i == max_num ):
break
# Set the number of sentences
self.num_sentences = i
print 'Number of sentences =', self.num_sentences
for j in range(0, self.num_sentences -1):
token = self.tokenize(self.sentence[j])
print self.sentence[j]
print token
print "\n"
def initializeCorpus(self, n, max_num = 10000,tweet_only=True):
self.sentence = {}
self.sentiment = {}
# Initialize counter
i = 0
# Collect sentences and sentiments
for entry in self.file1:
# Do not include header
if i == 0:
i+=1
continue
# Check for tweets
if tweet_only:
if int(entry[3]) != 3:
continue
# The actual message is the 9th attribute, sentiment is the 4th
curSent = re.sub('\||#|:|;|RT|@\w+|\**', '', entry[9])
sent = float(entry[4])
self.sentence[i - 1] = curSent
self.sentiment[i - 1] = sent
# Stop at 10000
i += 1
if ( i == max_num ):
break
# Set the number of sentences
self.num_sentences = i
print 'Number of sentences =', self.num_sentences
def makeCorpus(self, n):
# Create corpus and count word frequencies
self.corpus = {}
print 'Creating corpus with ', n , '- grams.'
for i in range(1,self.num_sentences):
# Assign at random to train, test or validation set
r = random.random()
if ( r < self.distribution[0] ):
self.trainSet.append(i-1)
else:
self.testSet.append(i-1)
self.corpus = dict()
for i in self.trainSet:
# Tokenize the sentence
tk_sent = nltk.tokenize.word_tokenize( self.sentence[i] )
# Iterate over every n tokens
for j in range(len(tk_sent)-(n-1)):
# token is now a uni/bi/tri/n-gram instead of a token
token = tuple(tk_sent[j:j+n])
# format: corpus[<combination of n tokens>]{neutrals, positives, negatives}
if token in self.corpus:
if self.sentiment[i] > 0:
self.corpus[token] = self.corpus[token][0] + 1, self.corpus[token][1] + 1, self.corpus[token][2]
elif self.sentiment[i] == 0:
self.corpus[token] = self.corpus[token][0] + 1, self.corpus[token][1], self.corpus[token][2]
else:
self.corpus[token] = self.corpus[token][0] + 1, self.corpus[token][1], self.corpus[token][2] + 1
else:
if self.sentiment[i] > 0:
self.corpus[token] = 1, 1, 0
elif self.sentiment[i] == 0:
self.corpus[token] = 1, 0, 0
else:
self.corpus[token] = 1, 0, 1
print 'Calculating unigram probability'
self.probWord = {}
# Corpus created, calculate words probability of sentiment based on frequency
for i in self.trainSet:
tk_sent = nltk.tokenize.word_tokenize( self.sentence[i] )
p = 0
# Iterate over every n tokens
for j in range(len(tk_sent)-(n-1)):
# token is now a uni/bi/tri/n-gram instead of a token
token = tuple(tk_sent[j:j+n])
self.probWord[token] = float(self.corpus[token][1]) / self.corpus[token][0]
# print token, ' || ',corpus[token][1],' / ',corpus[token][0],' = ', probWord[token], '\n'
p = p + self.probWord[token]
self.probSent[i] = p / float(len(tk_sent)) # to be extra certain intdiv does not occur
#'''
# Train + test of methods:
#'''
def trainSingleInputPerceptron(self, n):
print 'Training perceptron'
ssv = [x != 0 for x in self.sentiment.values()]
trainingSet = {}
# print 'probsent'
# print (self.probSent[i],)
# print 'ssv'
# print ssv
# print 'trainSet'
# print self.trainSet
for i in self.trainSet:
# print 'probsent'
# print (self.probSent[i],)
trainingSet[i] = ((self.probSent[i],), ssv[i])
self.p.train(trainingSet)
print 'Found threshold: ', self.p.threshold / self.p.weights[0]
print 'Testing perceptron'
# Calculate probability for test sentences
for i in self.testSet:
p = 0
tk_sent = nltk.tokenize.word_tokenize( self.sentence[i] )
# Iterate over every n tokens
for j in range(len(tk_sent)-(n-1)):
# token is now a uni/bi/tri/n-gram instead of a token
token = tuple(tk_sent[j:j+n])
try:
p = p + self.probWord[token]
except:
# If word does not occur in corpus, ignore for now
# (can try katz backoff later?)
pass
# Store the probability in dictionary
self.probSent[i] = p / float(len(tk_sent)) # to be extra certain intdiv does not occur
# print i, 'PROB', self.probSent[i], 'SENT', self.sentiment[i]
def trainMultiInputPerceptron(self):
ssv = [x != 0 for x in self.sentiment.values()]
print 'Number of inputs = ', len(self.bagOfWords)
# Create trainingset for perceptron
trainingSet = {}
for i in self.trainSet:
trainingSet[i] = (tuple(self.wordVectors[i]), ssv[i])
# Initialise weights on word probability
print 'Setting weights'
self.p.set_weights([self.probWord[token] for token in self.bagOfWords])
# Train the perceptron
print 'Training perceptron'
self.p.train(trainingSet,0.1,100)
def testMultiInputPerceptron(self):
# Initialize confusion matrix
confusion = {}
confusion['tp'] = 0
confusion['tn'] = 0
confusion['fp'] = 0
confusion['fn'] = 0
print 'Testing perceptron'
for i in self.testSet:
# Tokenize sentence
tk_sentence = nltk.tokenize.word_tokenize( self.sentence[i] )
# Create word vector
vec = [ (x in tk_sentence) for x in self.bagOfWords]
# Let the perceptron do its work
out = self.p.output(vec)
if out:
if self.sentiment[i] == 0:
confusion['fp'] += 1
else:
confusion['tp'] += 1
else:
if self.sentiment[i] == 0:
confusion['tn'] += 1
else:
confusion['fn'] += 1
# Print results
print 'Results for test set: '
print confusion
try:
acc = float(confusion['tp'] + confusion['tn']) / (confusion['tp'] + confusion['tn'] + confusion['fp'] + confusion['fn'])
except:
acc = 0
print 'accuracy = ', acc
try:
pre = float(confusion['tp']) / (confusion['tp'] + confusion['fp'] )
except:
pre = 0
print 'precision = ', pre
def printResults(self):
t = self.p.threshold / self.p.weights[0]
confusion = {}
confusion['tp'] = 0
confusion['tn'] = 0
confusion['fp'] = 0
confusion['fn'] = 0
for i in self.testSet:
if self.probSent[i] > t:
if self.sentiment[i] == 0:
confusion['fp'] += 1
#print self.sentence[i], ' Distance = ', self.probSent[i], '-', self.sentiment[i], ' = ', self.probSent[i]- self.sentiment[i]
else:
confusion['tp'] += 1
if self.probSent[i] < t:
if self.sentiment[i] == 0:
confusion['tn'] += 1
else:
confusion['fn'] += 1
#print self.sentence[i], ' Distance = ', self.probSent[i], '-', self.sentiment[i], ' = ', self.probSent[i]- self.sentiment[i]
# print 'Results for test set: '
# print confusion
acc = float(confusion['tp'] + confusion['tn']) / (confusion['tp'] + confusion['tn'] + confusion['fp'] + confusion['fn'])
# print 'accuracy = ', acc
pre = float(confusion['tp']) / (confusion['tp'] + confusion['fp'] )
# print 'precision = ', pre
return (acc, pre)
def createWordVectors(self):
# Create the bag of words
print 'Creating the bag of words'
for i in self.trainSet:
# Tokenize sentence
tk_sentence = nltk.tokenize.word_tokenize( self.sentence[i] )
# Check all tokens
for token in tk_sentence:
if token not in self.bagOfWords:
self.bagOfWords.append(token)
# Create the word vectors
print 'Creating word vectors'
for i in self.trainSet:
# Tokenize sentence
tk_sentence = nltk.tokenize.word_tokenize( self.sentence[i] )
# Create word vector
vec = [ (x in tk_sentence) for x in self.bagOfWords]
self.wordVectors[i] = vec
for i in self.testSet:
# Tokenize sentence
tk_sentence = nltk.tokenize.word_tokenize( self.sentence[i] )
# Create word vector
vec = [ (x in tk_sentence) for x in self.bagOfWords]
self.wordVectors[i] = vec
m = Main()