-
Notifications
You must be signed in to change notification settings - Fork 3
/
maxEntNLTK.py
262 lines (208 loc) · 8.28 KB
/
maxEntNLTK.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import csv
import nltk
import random
import time
import re
import numpy as np
#import matplotlib.pyplot as plt
class Main():
# Open a file
file1 = csv.reader(open('DataCSV.csv', 'rb'), delimiter=',', quotechar='"')
# Initialize dictionaries
sentence = {}
sentiment = {}
probSent = {}
corpus = {}
probWord = {}
naiveBayes = {}
# Initialize lists
trainSet = []
testSet = []
# The number of sentences
num_sentences = 0
def __init__(self):
self.maxEntClassifier(1)
'''
Machine learning methods:
'''
def maxEntClassifier(self, iterations=10, total_messages = 10000, print_scatter=False):
# Get current time
now = time.time()
# The n for the n-grams
n = 3
# Load the sentences and sentiments from file
self.initializeCorpus( n, total_messages )
allconfusion = [[0,0,0],[0,0,0],[0,0,0]]
for i in range( iterations ):
print "--- iteration", i + 1, "of", iterations, "---"
# Reset variables
self.naiveBayes = {}
self.sentenceLabel = {}
self.trainSet = []
self.testSet = []
self.priorNeutral = 0
self.priorPositive = 0
self.priorNegative = 0
self.featureSet= []
# Random selection of training and test data
self.makeCorpus( n, distribution = (0.7, 0.3) )
print 'Start training'
self.MEC = nltk.classify.MaxentClassifier.train( self.featureSet, 'IIS', max_iter=10 )
print 'Start testing'
self.testNaiveBayes()
# Testing
temp_set = [],[]
for j in self.testSet:
tk_sent = self.sentence[j]
# If sentence is longer than 3
if len(tk_sent) >= 3:
temp_set[1].append( self.sentiment[j] )
temp_set[0].append( self.sentenceLabel[j] )
# Create confusion matrix
confusion = [[0,0,0],[0,0,0],[0,0,0]]
for j in range(len(temp_set[0])):
sent = temp_set[1][j]
clas = temp_set[0][j]
if sent < 0: sent = -1
if sent > 0: sent = 1
confusion[int(sent+1)][int(clas+1)] += 1
print confusion
for j in range(3):
for k in range(3):
allconfusion[j][k] += confusion[j][k]
# Calculate mean
print 'Average:'
total = 0
for i in range(3):
for j in range(3):
allconfusion[i][j] /= float(iterations)
total += allconfusion[i][j]
#acc = (allconfusion[0][0] + allconfusion[1][1] + allconfusion[2][2]) / float(total)
# for every real class
s = 0
for i in range(3):
row_sum = sum(allconfusion[i])
s+= row_sum
for i in range(3):
row_sum = sum(allconfusion[i])
col_sum = 0
for j in range(3):
col_sum += confusion[j][i]
truepositives = float(allconfusion[i][i])
truenegatives = s - row_sum - col_sum + truepositives
falsepositives = col_sum - truepositives
falsenegatives = row_sum - truepositives
print 'For {0}-class:'.format(['Negative','Neutral','Positive'][i])
rec = truepositives / (truepositives + falsenegatives )
pre = truepositives / ( truepositives + falsepositives )
acc = (truepositives + truenegatives) / s
print 'Recall', rec
print 'Precision', pre
print 'Accuracy', acc
print allconfusion
print 'Time taken for', iterations, 'iterations: ', time.time()- now
'''
Cleaning methods
'''
def clean( self, sentence ):
# print sentence
sentence = sentence.replace( ':-)', " blijesmiley " )
sentence = sentence.replace( ':)', " blijesmiley " )
sentence = sentence.replace( ':(', " zieligesmiley " )
sentence = sentence.replace( ':s', ' awkwardsmiley ' )
sentence = sentence.replace( '!', " ! " )
sentence = sentence.replace( '?', " ? " )
# delete non-expressive words
#sentence = re.sub('en|de|het|ik|jij|zij|wij|deze|dit|die|dat|is|je|na|zijn|uit|tot|te|sl|hierin|naar|onder', '', sentence)
# Delete expressions, such as links, hashtags, twitteraccountnames
sentence = re.sub( r'\:P|\:p|http\/\/t\.co\/\w+|\.|\,|\[|\]|'s|\||#|:|;|RT|\(|\)|@\w+|\**', '', sentence )
sentence = re.sub( ' +',' ', sentence )
# remove double letters
#for x in 'abcdefghijklmnopqrstuvwxyz':
# sentence = re.sub(x+'+', x, sentence )
return sentence
# print sentence
# Werkt nog niet cleanup is nog niet goed genoeg
return self.__stemmer.stem( sentence )
def tokenize( self, sentence ):
return re.findall('\w+|\?|\!', sentence)
'''
Corpus methods
'''
def initializeCorpus(self, n, max_num=10000,tweet_only=True):
self.sentence = {}
self.sentiment = {}
# Initialize counter
i = 0
# Create corpus and count word frequencies
self.corpus = {}
print 'Creating corpus with ', n , '- grams.'
# Collect sentences and sentiments
for entry in self.file1:
# Do not include header
if i == 0:
i+=1
continue
# Check for tweets
if tweet_only:
if int(entry[3]) != 3:
continue
# The actual message is the 9th attribute, sentiment is the 4th
curSent = self.tokenize( self.clean( entry[9] ) )
sent = float(entry[4])
self.sentence[i - 1] = curSent
self.sentiment[i - 1] = sent
# Stop at 10000
i += 1
if ( i == max_num ):
break
# Set the number of sentences
self.num_sentences = i
print 'Number of sentences =', self.num_sentences
def makeCorpus( self, n, distribution ):
for i in range(1,self.num_sentences):
# Assign at random to train, test or validation set
r = random.random()
if ( r < distribution[0] ):
self.trainSet.append(i-1)
else:
self.testSet.append(i-1)
self.featureSet = []
# Count for every class the occurences
for i in self.trainSet:
tk_sent = self.sentence[i]
# If sentence is longer than n
if len(tk_sent) >= n:
features = {}
if self.sentiment[i] < 0:
label = -1
elif self.sentiment[i] > 0:
label = 1
else:
label = 0
# Iterate over every n tokens
for j in range( len(tk_sent) - (n-1) ):
# token is now a uni/bi/tri/n-gram instead of a token
token = tuple( tk_sent[j:j+n] )
if token in features:
features[token] += 1
else:
features[token] = 1
self.featureSet.append( (features,label) )
def testNaiveBayes(self, n=3):
for i in self.testSet:
tk_sent = self.sentence[i]
# If sentence is longer than n
if len(tk_sent) >= n:
features = {}
label = self.sentiment[i]
# Iterate over every n tokens
for j in range( len(tk_sent) - (n-1) ):
# token is now a uni/bi/tri/n-gram instead of a token
token = tuple( tk_sent[j:j+n] )
if token in features:
features[token] += 1
else:
features[token] = 1
self.sentenceLabel[i] = self.MEC.classify(features)
m = Main()