forked from DawnsonLi/EVT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
middle_spot.py
565 lines (474 loc) · 19.2 KB
/
middle_spot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
# -*- coding: utf-8 -*-
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from math import log,floor
import tqdm
from scipy.optimize import minimize
# colors for plot
deep_saffron = '#FF9933'
air_force_blue = '#5D8AA8'
def backMean(X,d):
M = []
w = X[:d].sum()
M.append(w/d)
for i in range(d,len(X)):
w = w - X[i-d] + X[i]
M.append(w/d)
return np.array(M)
class MISPOT:
"""
This class allows to run biSPOT algorithm on univariate dataset (upper and lower bounds)
Attributes
----------
proba : float
Detection level (risk), chosen by the user
extreme_quantile : float
current threshold (bound between normal and abnormal events)
data : numpy.array
stream
init_data : numpy.array
initial batch of observations (for the calibration/initialization step)
init_threshold : float ------------t
initial threshold computed during the calibration step
peaks : numpy.array
array of peaks (excesses above the initial threshold)
n : int
number of observed values
Nt : int
number of observed peaks
"""
def __init__(self, q = 1e-4):
"""
Constructor
Parameters
----------
q
Detection level (risk)
Returns
----------
biSPOT object
"""
self.proba = q
self.data = None
self.init_data = None
self.update_number = 0
self.n = 0
nonedict = {'up':None,'down':None}
self.extreme_quantile = dict.copy(nonedict)
self.init_threshold = dict.copy(nonedict)
self.peaks = dict.copy(nonedict)
self.gamma = dict.copy(nonedict)
self.sigma = dict.copy(nonedict)
self.Nt = {'up':0,'down':0}
def __str__(self):
s = ''
s += 'Streaming Peaks-Over-Threshold Object\n'
s += 'Detection level q = %s\n' % self.proba
if self.data is not None:
s += 'Data imported : Yes\n'
s += '\t initialization : %s values\n' % self.init_data.size
s += '\t stream : %s values\n' % self.data.size
else:
s += 'Data imported : No\n'
return s
if self.n == 0:
s += 'Algorithm initialized : No\n'
else:
s += 'Algorithm initialized : Yes\n'
s += '\t initial threshold : %s\n' % self.init_threshold
r = self.n-self.init_data.size
if r > 0:
s += 'Algorithm run : Yes\n'
s += '\t number of observations : %s (%.2f %%)\n' % (r,100*r/self.n)
s += '\t triggered alarms : %s (%.2f %%)\n' % (len(self.alarm),100*len(self.alarm)/self.n)
else:
s += '\t number of peaks : %s\n' % self.Nt
s += '\t upper extreme quantile : %s\n' % self.extreme_quantile['up']
s += '\t lower extreme quantile : %s\n' % self.extreme_quantile['down']
s += 'Algorithm run : No\n'
return s
def fit(self,init_data,data):
"""
Import data to biSPOT object
Parameters
----------
init_data : list, numpy.array or pandas.Series
initial batch to calibrate the algorithm ()
data : numpy.array
data for the run (list, np.array or pd.series)
"""
if isinstance(data,list):
self.data = np.array(data)
elif isinstance(data,np.ndarray):
self.data = data
elif isinstance(data,pd.Series):
self.data = data.values
else:
print('This data format (%s) is not supported' % type(data))
return
if isinstance(init_data,list):
self.init_data = np.array(init_data)
self.update_number = len(self.init_data)
elif isinstance(init_data,np.ndarray):
self.init_data = init_data
self.update_number = len(self.init_data)
elif isinstance(init_data,pd.Series):
self.init_data = init_data.values
self.update_number = len(self.init_data)
elif isinstance(init_data,int):
self.init_data = self.data[:init_data]
self.data = self.data[init_data:]
self.update_number = init_data
elif isinstance(init_data,float) & (init_data<1) & (init_data>0):
r = int(init_data*data.size)
self.init_data = self.data[:r]
self.data = self.data[r:]
else:
print('The initial data cannot be set')
return
def add(self,data):
"""
This function allows to append data to the already fitted data
Parameters
----------
data : list, numpy.array, pandas.Series
data to append
"""
if isinstance(data,list):
data = np.array(data)
elif isinstance(data,np.ndarray):
data = data
elif isinstance(data,pd.Series):
data = data.values
else:
print('This data format (%s) is not supported' % type(data))
return
self.data = np.append(self.data,data)
return
def initialize(self, verbose = True):
"""
Run the calibration (initialization) step
Parameters
----------
verbose : bool
(default = True) If True, gives details about the batch initialization
"""
n_init = self.init_data.size
S = np.sort(self.init_data) # we sort X to get the empirical quantile
self.init_threshold['up'] = S[int(0.98*n_init)] # t is fixed for the whole algorithm
self.init_threshold['down'] = S[int(0.02*n_init)] # t is fixed for the whole algorithm
# initial peaks
self.peaks['up'] = self.init_data[self.init_data>self.init_threshold['up']]-self.init_threshold['up']
self.peaks['down'] = -(self.init_data[self.init_data<self.init_threshold['down']]-self.init_threshold['down'])
self.Nt['up'] = self.peaks['up'].size
self.Nt['down'] = self.peaks['down'].size
self.n = n_init
if verbose:
print('Initial threshold : %s' % self.init_threshold)
print('Number of peaks : %s' % self.Nt)
#print('Grimshaw maximum log-likelihood estimation ... ', end = '')
l = {'up':None,'down':None}
for side in ['up','down']:
g,s,l[side] = self._grimshaw(side)
self.extreme_quantile[side] = self._quantile(side,g,s)
self.gamma[side] = g
self.sigma[side] = s
ltab = 20
form = ('\t'+'%20s' + '%20.2f' + '%20.2f')
'''
if verbose:
print('[done]')
print('\t' + 'Parameters'.rjust(ltab) + 'Upper'.rjust(ltab) + 'Lower'.rjust(ltab))
print('\t' + '-'*ltab*3)
print(form % (chr(0x03B3),self.gamma['up'],self.gamma['down']))
print(form % (chr(0x03C3),self.sigma['up'],self.sigma['down']))
print(form % ('likelihood',l['up'],l['down']))
print(form % ('Extreme quantile',self.extreme_quantile['up'],self.extreme_quantile['down']))
print('\t' + '-'*ltab*3)
'''
return
def _rootsFinder(self, fun,jac,bounds,npoints,method):
"""
Find possible roots of a scalar function
Parameters
----------
fun : function
scalar function
jac : function
first order derivative of the function
bounds : tuple
(min,max) interval for the roots search
npoints : int
maximum number of roots to output
method : str
'regular' : regular sample of the search interval, 'random' : uniform (distribution) sample of the search interval
Returns
----------
numpy.array
possible roots of the function
"""
if method == 'regular':
step = (bounds[1]-bounds[0])/(npoints+1)
X0 = np.arange(bounds[0]+step,bounds[1],step)
elif method == 'random':
X0 = np.random.uniform(bounds[0],bounds[1],npoints)
def objFun(X,f,jac):
g = 0
j = np.zeros(X.shape)
i = 0
for x in X:
fx = f(x)
g = g+fx**2
j[i] = 2*fx*jac(x)
i = i+1
return g,j
opt = minimize(lambda X:objFun(X,fun,jac), X0,
method='L-BFGS-B',
jac=True, bounds=[bounds]*len(X0))
X = opt.x
np.round(X,decimals = 5)
return np.unique(X)
def _log_likelihood(self, Y,gamma,sigma):
"""
Compute the log-likelihood for the Generalized Pareto Distribution (μ=0)
Parameters
----------
Y : numpy.array
observations
gamma : float
GPD index parameter
sigma : float
GPD scale parameter (>0)
Returns
----------
float
log-likelihood of the sample Y to be drawn from a GPD(γ,σ,μ=0)
"""
n = Y.size
if gamma != 0:
tau = gamma/sigma
L = -n * log(sigma) - ( 1 + (1/gamma) ) * ( np.log(1+tau*Y) ).sum()
else:
L = n * ( 1 + log(Y.mean()) )
return L
def _grimshaw(self,side,epsilon = 1e-8, n_points = 10):
"""
Compute the GPD parameters estimation with the Grimshaw's trick
Parameters
----------
epsilon : float
numerical parameter to perform (default : 1e-8)
n_points : int
maximum number of candidates for maximum likelihood (default : 10)
Returns
----------
gamma_best,sigma_best,ll_best
gamma estimates, sigma estimates and corresponding log-likelihood
"""
def u(s):
return 1 + np.log(s).mean()
def v(s):
return np.mean(1/s)
def w(Y,t):
s = 1+t*Y
us = u(s)
vs = v(s)
return us*vs-1
def jac_w(Y,t):
s = 1+t*Y
us = u(s)
vs = v(s)
jac_us = (1/t)*(1-vs)
jac_vs = (1/t)*(-vs+np.mean(1/s**2))
return us*jac_vs+vs*jac_us
Ym = self.peaks[side].min()
YM = self.peaks[side].max()
Ymean = self.peaks[side].mean()
a = -1/YM
if abs(a)<2*epsilon:
epsilon = abs(a)/n_points
a = a + epsilon
b = 2*(Ymean-Ym)/(Ymean*Ym)
c = 2*(Ymean-Ym)/(Ym**2)
# We look for possible roots
left_zeros = self._rootsFinder(lambda t: w(self.peaks[side],t),
lambda t: jac_w(self.peaks[side],t),
(a+epsilon,-epsilon),
n_points,'regular')
right_zeros = self._rootsFinder(lambda t: w(self.peaks[side],t),
lambda t: jac_w(self.peaks[side],t),
(b,c),
n_points,'regular')
# all the possible roots
zeros = np.concatenate((left_zeros,right_zeros))
# 0 is always a solution so we initialize with it
gamma_best = 0
sigma_best = Ymean
ll_best = self._log_likelihood(self.peaks[side],gamma_best,sigma_best)
# we look for better candidates
for z in zeros:
gamma = u(1+z*self.peaks[side])-1
sigma = gamma/z
ll = self._log_likelihood(self.peaks[side],gamma,sigma)
if ll>ll_best:
gamma_best = gamma
sigma_best = sigma
ll_best = ll
return gamma_best,sigma_best,ll_best
def _quantile(self,side,gamma,sigma):
"""
Compute the quantile at level 1-q for a given side
Parameters
----------
side : str
'up' or 'down'
gamma : float
GPD parameter
sigma : float
GPD parameter
Returns
----------
float
quantile at level 1-q for the GPD(γ,σ,μ=0)
"""
if side == 'up':
r = self.n * self.proba / self.Nt[side]
if gamma != 0:
return self.init_threshold['up'] + (sigma/gamma)*(pow(r,-gamma)-1)
else:
return self.init_threshold['up'] - sigma*log(r)
elif side == 'down':
r = self.n * self.proba / self.Nt[side]
if gamma != 0:
return self.init_threshold['down'] - (sigma/gamma)*(pow(r,-gamma)-1)
else:
return self.init_threshold['down'] + sigma*log(r)
else:
print('error : the side is not right')
def run(self, with_alarm = True):
"""
Run biSPOT on the stream
Parameters
----------
with_alarm : bool
(default = True) If False, SPOT will adapt the threshold assuming \
there is no abnormal values
Returns
----------
dict
keys : 'upper_thresholds', 'lower_thresholds' and 'alarms'
'***-thresholds' contains the extreme quantiles and 'alarms' contains \
the indexes of the values which have triggered alarms
"""
if (self.n>self.init_data.size):
print('Warning : the algorithm seems to have already been run, you \
should initialize before running again')
return {}
# list of the thresholds
thup = []
thdown = []
alarm = []
# Loop over the stream
for i in tqdm.tqdm(range(self.data.size)):
# If the observed value exceeds the current threshold (alarm case)
if self.data[i]>self.extreme_quantile['up'] :
# if we want to alarm, we put it in the alarm list
if with_alarm:
alarm.append(i)
# otherwise we add it in the peaks
else:
self.peaks['up'] = np.append(self.peaks['up'],self.data[i]-self.init_threshold['up'])
self.Nt['up'] += 1
self.n += 1
# and we update the thresholds
g,s,l = self._grimshaw('up')
self.extreme_quantile['up'] = self._quantile('up',g,s)
# case where the value exceeds the initial threshold but not the alarm ones
elif self.data[i]>self.init_threshold['up']:
# we add it in the peaks
self.peaks['up'] = np.append(self.peaks['up'],self.data[i]-self.init_threshold['up'])
self.Nt['up'] += 1
self.n += 1
# and we update the thresholds
g,s,l = self._grimshaw('up')
self.extreme_quantile['up'] = self._quantile('up',g,s)
elif self.data[i]<self.extreme_quantile['down'] :
# if we want to alarm, we put it in the alarm list
if with_alarm:
alarm.append(i)
# otherwise we add it in the peaks
else:
self.peaks['down'] = np.append(self.peaks['down'],-(self.data[i]-self.init_threshold['down']))
self.Nt['down'] += 1
self.n += 1
# and we update the thresholds
g,s,l = self._grimshaw('down')
self.extreme_quantile['down'] = self._quantile('down',g,s)
# case where the value exceeds the initial threshold but not the alarm ones
elif self.data[i]<self.init_threshold['down']:
# we add it in the peaks
self.peaks['down'] = np.append(self.peaks['down'],-(self.data[i]-self.init_threshold['down']))
self.Nt['down'] += 1
self.n += 1
# and we update the thresholds
g,s,l = self._grimshaw('down')
self.extreme_quantile['down'] = self._quantile('down',g,s)
else:
self.n += 1
counter = 3*self.update_number
if self.n % counter == 0: #update
# update on time
#up_data =np.append(self.init_data, self.data[:i])
up_data =self.data[self.n- counter :self.n]
print 'update at ',self.n
print 'updating using data: ', len(up_data)
S = np.sort(up_data) # we sort X to get the empirical quantile
self.init_threshold['up'] = S[int(0.98*len(S))] # t is fixed for the whole algorithm
self.init_threshold['down'] = S[int(0.02*len(S))] # t is fixed for the whole algorithm
self.peaks['up'] = up_data[up_data>self.init_threshold['up']]-self.init_threshold['up']
self.peaks['down'] = -(up_data[up_data<self.init_threshold['down']]-self.init_threshold['down'])
self.Nt['up'] = self.peaks['up'].size
self.Nt['down'] = self.peaks['down'].size
l = {'up':None,'down':None}
for side in ['up','down']:
g,s,l[side] = self._grimshaw(side)
self.extreme_quantile[side] = self._quantile(side,g,s)
self.gamma[side] = g
self.sigma[side] = s
thup.append(self.extreme_quantile['up']) # thresholds record
thdown.append(self.extreme_quantile['down']) # thresholds record
return {'upper_thresholds' : thup,'lower_thresholds' : thdown, 'alarms': alarm}
def plot(self,run_results,with_alarm = True):
"""
Plot the results of given by the run
Parameters
----------
run_results : dict
results given by the 'run' method
with_alarm : bool
(default = True) If True, alarms are plotted.
Returns
----------
list
list of the plots
"""
x = range(self.data.size)
K = run_results.keys()
ts_fig, = plt.plot(x,self.data,color=air_force_blue)
fig = [ts_fig]
if 'upper_thresholds' in K:
thup = run_results['upper_thresholds']
uth_fig, = plt.plot(x,thup,color=deep_saffron,lw=2,ls='dashed')
fig.append(uth_fig)
if 'lower_thresholds' in K:
thdown = run_results['lower_thresholds']
lth_fig, = plt.plot(x,thdown,color=deep_saffron,lw=2,ls='dashed')
fig.append(lth_fig)
if with_alarm and ('alarms' in K):
alarm = run_results['alarms']
al_fig = plt.scatter(alarm,self.data[alarm],color='red')
fig.append(al_fig)
plt.xlim((0,self.data.size))
plt.show()
return fig