Skip to content

Latest commit

 

History

History
173 lines (132 loc) · 4.06 KB

README.md

File metadata and controls

173 lines (132 loc) · 4.06 KB

Schemantic

Do you have configurations stored in files? You have come to the right place! Create schemas from models or classes with homologous, grouped, or cultured paradigms. Batteries for loading and dumping included!

Supports pydantic.BaseModel and any Python class and dataclass/pydantic.dataclass!

Classes of schemas

Homologue

from pydantic import BaseModel
from schemantic import HomologueSchemer

class Thief(BaseModel):
    stolen_goods: int
    steals_only: str

my_homolog = HomologueSchemer.from_originating_type(Thief, instance_name_to_pre_definition={"copycat": {}, "pink_panther": {}})

HomologueSchemer also accepts instance_name_getter parameter, which is a dictionary of instance names to pre-defined values.

Grouped

You can manage multiple schemas as a group:

from pydantic import BaseModel
from schemantic import GroupSchemer

class Baker(BaseModel):
    baked_goods: int
    citizen_of: str

class Cop(BaseModel):
    years_of_service: int
    citizen_of: str

group_schema = GroupSchemer.from_originating_types([Baker, Cop])

Culture

You can also manage multiple types of schemas under one culture:

from ordered_set import OrderedSet
from schemantic import CultureSchemer

CultureSchemer(source_schemas=OrderedSet([homolog_schema, group_schema]))

Methods

HomologueSchemer, GroupSchemer, and CultureSchemer have the following methods.

.schema()

Creates a BaseModel derived class instance, which represents the schema of the origin class/model.

my_homolog.schema()

Output:

"class_name": "Thief"
"common": {
    steals_only: "jewelry"
}
"copycat": {}
"pink_panther": {}
"required": ["stolen_goods", "steals_only"]
"field_to_info": {"stolen_goods": "integer"}

.dump()

Dump the dictionary from .schema() to a yaml or toml file.

my_schema.dump("my/path/schema.yaml")
# There is also toml support
my_schema.dump("my/path/schema.toml")

.parse()

"class_name": "Thief"
"common": {
    steals_only: "jewelry"
}
"copycat": {
    stolen_goods: 10
}
"pink_panther": {
    stolen_goods: 14
}
"required": ["stolen_goods", "steals_only"]
"field_to_info": {"stolen_goods": "integer"}
parsed = my_homolog.parse_schema("my/path/schema.yaml")

# parsed["copycat"].stolen_goods == 10
# parsed["pink_panther"].stolen_goods == 14

# Both -> steals_only == "jewelry"

Class configuration

Use schemantic.project module to control schemantic processing from the origin class/model side.

Classes and dataclasses

from dataclasses import dataclass
from typing import Optional, Union

from schemantic.project import SchemanticProjectMixin


@dataclass
class TestDataclass(SchemanticProjectMixin):
    must_be: int
    we: str = "n"

    n: None = None
    age: Optional[int] = None
    new_age: Union[int, str, None] = None

    exclude_me: Optional[int] = None
    _exclude_me_too: Optional[float] = None

    @classmethod
    @property
    def fields_to_exclude_from_single_schema(cls) -> set[str]:
        upstream = super().fields_to_exclude_from_single_schema
        upstream.update(("exclude_me",))
        return upstream

This will exclude exclude_me (defined in fields_to_exclude_from_single_schema) and _exclude_me_too (private).

Same for pydantic.BaseModel:

from typing import Optional, Union

from pydantic import BaseModel, computed_field

from schemantic.project import SchemanticProjectModelMixin


class TestModel(SchemanticProjectModelMixin, BaseModel):
    must_be: int
    we: str = "n"

    n: None = None
    age: Optional[int] = None
    new_age: Union[int, str, None] = None

    exclude_me: Optional[int] = None
    _exclude_me_too: Optional[float] = None

    @classmethod
    def fields_to_exclude_from_single_schema(cls) -> set[str]:
        upstream = super().fields_to_exclude_from_single_schema
        upstream.update(("exclude_me",))
        return upstream

Install

pip install schemantic

For toml or yaml dumping and parsing

pip install schemantic[toml]
pip install schemantic[yaml]