-
Notifications
You must be signed in to change notification settings - Fork 7
/
main.m
101 lines (89 loc) · 2.14 KB
/
main.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
clc
clear
global N N_RF K P_t
global H H_t P
global V_RF
K = 8;
N = 64;
N_RF = 9;
P_t = K;
beta = ones(1,K);% beta_k = 1; %均匀分配权重
sigma2 = K;
SNR = P_t/sigma2;% SNR = P/sigma^2;
SNR_dB = 10* log10(SNR);
H = channel(N,K); % 生成信道
% 生成随机可行解
% 从可行的一个解开始
P = eye(K);
% V_RF = ones(N,N_RF);
tt = 2*pi*rand(1,N*N_RF);
ttt = exp(1j*tt);
V_RF = reshape(ttt,N,N_RF);
% 生成随机数,才能保证V_RF满秩,否则后面的A_j不满秩
H_t = P^(-0.5) * H;
% 预分配空间
for loop = 1:200
V_RF_last = V_RF;
V_RF = change_V_RF();
% flag = 1;
% for jj = 1:1:N_RF
% for ii = 1:1:N
% ttt_r = real(V_RF(ii,jj))/real(V_RF_last(ii,jj))
% ttt_i = imag(V_RF(ii,jj))/imag(V_RF_last(ii,jj))
% if(ttt_r >= 1.05 || ttt_r <= 0.95 || ttt_i <= 0.95 || ttt_i >= 1.05)
% flag = 0;
% break;
% end
% end
% if(flag == 0) break; end
% end
% if(flag == 1)
% disp("successfully converged");
% V_RF
% break;
% end
end
max_ = 0;
for jj = 1:N_RF
for ii = 1:N
ttt_r = abs(real(V_RF(ii,jj))/real(V_RF_last(ii,jj))-1);
ttt_i = abs(imag(V_RF(ii,jj))/imag(V_RF_last(ii,jj))-1);
max_ = max([ttt_r,ttt_i,max_]);
end
end
% 生成功率分配矩阵
V_D_t = (V_RF') * (H')/ ( H * V_RF * (V_RF') * (H'));
Q_t = (V_D_t') * (V_RF') * V_RF * V_D_t;
% 迭代求出lamda
lamda = 1;
while 1
initPower = 0;
posi = 0;
for k = 1:1:K
tttt = (beta(k)/lamda) - Q_t(k,k)*sigma2;
if(tttt > 0 )
initPower = initPower + tttt;
posi = posi + 1;
end
end
if( abs(initPower / P_t -1) <= 0.05 )
disp("find P");
break;
end
if(posi > 0) lamda = lamda + 0.5*(initPower - P_t)/posi;
else lamda = lamda/4;
end
end
% 求出P
P = zeros(K,K);
for kk = 1:1:K
P(kk,kk) = max([(beta(kk)/lamda) - Q_t(kk,kk)*sigma2, 0]) / Q_t(kk,kk);
end
% V_D
V_D = (V_RF') * (H') / ( H *V_RF * (V_RF') *(H'));
% 计算 R_k 求和
R = zeros(1,K);
for k = 1:1:K
R(k) = beta(k) * log2(1+(P(k,k)/sigma2));
end
Sum_R = sum(R)