-
Notifications
You must be signed in to change notification settings - Fork 1
/
nanoflann.hpp
1984 lines (1738 loc) · 71.2 KB
/
nanoflann.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
* Copyright 2011-2016 Jose Luis Blanco (joseluisblancoc@gmail.com).
* All rights reserved.
*
* THE BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
/** \mainpage nanoflann C++ API documentation
* nanoflann is a C++ header-only library for building KD-Trees, mostly
* optimized for 2D or 3D point clouds.
*
* nanoflann does not require compiling or installing, just an
* #include <nanoflann.hpp> in your code.
*
* See:
* - <a href="modules.html" >C++ API organized by modules</a>
* - <a href="https://github.com/jlblancoc/nanoflann" >Online README</a>
* - <a href="http://jlblancoc.github.io/nanoflann/" >Doxygen documentation</a>
*/
#ifndef NANOFLANN_HPP_
#define NANOFLANN_HPP_
#include <vector>
#include <cassert>
#include <algorithm>
#include <stdexcept>
#include <cstdio> // for fwrite()
#define _USE_MATH_DEFINES // Required by MSVC to define M_PI,etc. in <cmath>
#include <cmath> // for abs()
#include <cstdlib> // for abs()
#include <limits>
// Avoid conflicting declaration of min/max macros in windows headers
#if !defined(NOMINMAX) && (defined(_WIN32) || defined(_WIN32_) || defined(WIN32) || defined(_WIN64))
# define NOMINMAX
# ifdef max
# undef max
# undef min
# endif
#endif
namespace nanoflann
{
/** @addtogroup nanoflann_grp nanoflann C++ library for ANN
* @{ */
/** Library version: 0xMmP (M=Major,m=minor,P=patch) */
#define NANOFLANN_VERSION 0x123
/** @addtogroup result_sets_grp Result set classes
* @{ */
template <typename DistanceType, typename IndexType = size_t, typename CountType = size_t>
class KNNResultSet
{
IndexType * indices;
DistanceType* dists;
CountType capacity;
CountType count;
public:
inline KNNResultSet(CountType capacity_) : indices(0), dists(0), capacity(capacity_), count(0)
{
}
inline void init(IndexType* indices_, DistanceType* dists_)
{
indices = indices_;
dists = dists_;
count = 0;
if (capacity)
dists[capacity-1] = (std::numeric_limits<DistanceType>::max)();
}
inline CountType size() const
{
return count;
}
inline bool full() const
{
return count == capacity;
}
/**
* Called during search to add an element matching the criteria.
* @return true if the search should be continued, false if the results are sufficient
*/
inline bool addPoint(DistanceType dist, IndexType index)
{
CountType i;
for (i = count; i > 0; --i) {
#ifdef NANOFLANN_FIRST_MATCH // If defined and two points have the same distance, the one with the lowest-index will be returned first.
if ( (dists[i-1] > dist) || ((dist == dists[i-1]) && (indices[i-1] > index)) ) {
#else
if (dists[i-1] > dist) {
#endif
if (i < capacity) {
dists[i] = dists[i-1];
indices[i] = indices[i-1];
}
}
else break;
}
if (i < capacity) {
dists[i] = dist;
indices[i] = index;
}
if (count < capacity) count++;
// tell caller that the search shall continue
return true;
}
inline DistanceType worstDist() const
{
return dists[capacity-1];
}
};
/** operator "<" for std::sort() */
struct IndexDist_Sorter
{
/** PairType will be typically: std::pair<IndexType,DistanceType> */
template <typename PairType>
inline bool operator()(const PairType &p1, const PairType &p2) const {
return p1.second < p2.second;
}
};
/**
* A result-set class used when performing a radius based search.
*/
template <typename DistanceType, typename IndexType = size_t>
class RadiusResultSet
{
public:
const DistanceType radius;
std::vector<std::pair<IndexType, DistanceType> > &m_indices_dists;
inline RadiusResultSet(DistanceType radius_, std::vector<std::pair<IndexType,DistanceType> > &indices_dists) : radius(radius_), m_indices_dists(indices_dists)
{
init();
}
inline void init() { clear(); }
inline void clear() { m_indices_dists.clear(); }
inline size_t size() const { return m_indices_dists.size(); }
inline bool full() const { return true; }
/**
* Called during search to add an element matching the criteria.
* @return true if the search should be continued, false if the results are sufficient
*/
inline bool addPoint(DistanceType dist, IndexType index)
{
if (dist < radius)
m_indices_dists.push_back(std::make_pair(index, dist));
return true;
}
inline DistanceType worstDist() const { return radius; }
/**
* Find the worst result (furtherest neighbor) without copying or sorting
* Pre-conditions: size() > 0
*/
std::pair<IndexType,DistanceType> worst_item() const
{
if (m_indices_dists.empty()) throw std::runtime_error("Cannot invoke RadiusResultSet::worst_item() on an empty list of results.");
typedef typename std::vector<std::pair<IndexType, DistanceType> >::const_iterator DistIt;
DistIt it = std::max_element(m_indices_dists.begin(), m_indices_dists.end(), IndexDist_Sorter());
return *it;
}
};
/** @} */
/** @addtogroup loadsave_grp Load/save auxiliary functions
* @{ */
template<typename T>
void save_value(FILE* stream, const T& value, size_t count = 1)
{
fwrite(&value, sizeof(value), count, stream);
}
template<typename T>
void save_value(FILE* stream, const std::vector<T>& value)
{
size_t size = value.size();
fwrite(&size, sizeof(size_t), 1, stream);
fwrite(&value[0], sizeof(T), size, stream);
}
template<typename T>
void load_value(FILE* stream, T& value, size_t count = 1)
{
size_t read_cnt = fread(&value, sizeof(value), count, stream);
if (read_cnt != count) {
throw std::runtime_error("Cannot read from file");
}
}
template<typename T>
void load_value(FILE* stream, std::vector<T>& value)
{
size_t size;
size_t read_cnt = fread(&size, sizeof(size_t), 1, stream);
if (read_cnt != 1) {
throw std::runtime_error("Cannot read from file");
}
value.resize(size);
read_cnt = fread(&value[0], sizeof(T), size, stream);
if (read_cnt != size) {
throw std::runtime_error("Cannot read from file");
}
}
/** @} */
/** @addtogroup metric_grp Metric (distance) classes
* @{ */
struct Metric
{
};
/** Manhattan distance functor (generic version, optimized for high-dimensionality data sets).
* Corresponding distance traits: nanoflann::metric_L1
* \tparam T Type of the elements (e.g. double, float, uint8_t)
* \tparam _DistanceType Type of distance variables (must be signed) (e.g. float, double, int64_t)
*/
template<class T, class DataSource, typename _DistanceType = T>
struct L1_Adaptor
{
typedef T ElementType;
typedef _DistanceType DistanceType;
const DataSource &data_source;
L1_Adaptor(const DataSource &_data_source) : data_source(_data_source) { }
inline DistanceType evalMetric(const T* a, const size_t b_idx, size_t size, DistanceType worst_dist = -1) const
{
DistanceType result = DistanceType();
const T* last = a + size;
const T* lastgroup = last - 3;
size_t d = 0;
/* Process 4 items with each loop for efficiency. */
while (a < lastgroup) {
const DistanceType diff0 = std::abs(a[0] - data_source.kdtree_get_pt(b_idx,d++));
const DistanceType diff1 = std::abs(a[1] - data_source.kdtree_get_pt(b_idx,d++));
const DistanceType diff2 = std::abs(a[2] - data_source.kdtree_get_pt(b_idx,d++));
const DistanceType diff3 = std::abs(a[3] - data_source.kdtree_get_pt(b_idx,d++));
result += diff0 + diff1 + diff2 + diff3;
a += 4;
if ((worst_dist > 0) && (result > worst_dist)) {
return result;
}
}
/* Process last 0-3 components. Not needed for standard vector lengths. */
while (a < last) {
result += std::abs( *a++ - data_source.kdtree_get_pt(b_idx, d++) );
}
return result;
}
template <typename U, typename V>
inline DistanceType accum_dist(const U a, const V b, int ) const
{
return std::abs(a-b);
}
};
/** Squared Euclidean distance functor (generic version, optimized for high-dimensionality data sets).
* Corresponding distance traits: nanoflann::metric_L2
* \tparam T Type of the elements (e.g. double, float, uint8_t)
* \tparam _DistanceType Type of distance variables (must be signed) (e.g. float, double, int64_t)
*/
template<class T, class DataSource, typename _DistanceType = T>
struct L2_Adaptor
{
typedef T ElementType;
typedef _DistanceType DistanceType;
const DataSource &data_source;
L2_Adaptor(const DataSource &_data_source) : data_source(_data_source) { }
inline DistanceType evalMetric(const T* a, const size_t b_idx, size_t size, DistanceType worst_dist = -1) const
{
DistanceType result = DistanceType();
const T* last = a + size;
const T* lastgroup = last - 3;
size_t d = 0;
/* Process 4 items with each loop for efficiency. */
while (a < lastgroup) {
const DistanceType diff0 = a[0] - data_source.kdtree_get_pt(b_idx,d++);
const DistanceType diff1 = a[1] - data_source.kdtree_get_pt(b_idx,d++);
const DistanceType diff2 = a[2] - data_source.kdtree_get_pt(b_idx,d++);
const DistanceType diff3 = a[3] - data_source.kdtree_get_pt(b_idx,d++);
result += diff0 * diff0 + diff1 * diff1 + diff2 * diff2 + diff3 * diff3;
a += 4;
if ((worst_dist > 0) && (result > worst_dist)) {
return result;
}
}
/* Process last 0-3 components. Not needed for standard vector lengths. */
while (a < last) {
const DistanceType diff0 = *a++ - data_source.kdtree_get_pt(b_idx, d++);
result += diff0 * diff0;
}
return result;
}
template <typename U, typename V>
inline DistanceType accum_dist(const U a, const V b, int ) const
{
return (a - b) * (a - b);
}
};
/** Squared Euclidean (L2) distance functor (suitable for low-dimensionality datasets, like 2D or 3D point clouds)
* Corresponding distance traits: nanoflann::metric_L2_Simple
* \tparam T Type of the elements (e.g. double, float, uint8_t)
* \tparam _DistanceType Type of distance variables (must be signed) (e.g. float, double, int64_t)
*/
template<class T, class DataSource, typename _DistanceType = T>
struct L2_Simple_Adaptor
{
typedef T ElementType;
typedef _DistanceType DistanceType;
const DataSource &data_source;
L2_Simple_Adaptor(const DataSource &_data_source) : data_source(_data_source) { }
inline DistanceType evalMetric(const T* a, const size_t b_idx, size_t size) const {
DistanceType result = DistanceType();
for (size_t i = 0; i < size; ++i) {
const DistanceType diff = a[i] - data_source.kdtree_get_pt(b_idx, i);
result += diff * diff;
}
return result;
}
template <typename U, typename V>
inline DistanceType accum_dist(const U a, const V b, int ) const
{
return (a - b) * (a - b);
}
};
/** SO2 distance functor
* Corresponding distance traits: nanoflann::metric_SO2
* \tparam T Type of the elements (e.g. double, float)
* \tparam _DistanceType Type of distance variables (must be signed) (e.g. float, double)
* orientation is constrained to be in [-pi, pi]
*/
template<class T, class DataSource, typename _DistanceType = T>
struct SO2_Adaptor
{
typedef T ElementType;
typedef _DistanceType DistanceType;
const DataSource &data_source;
SO2_Adaptor(const DataSource &_data_source) : data_source(_data_source) { }
inline DistanceType evalMetric(const T* a, const size_t b_idx, size_t size) const {
return accum_dist(a[size-1], data_source.kdtree_get_pt(b_idx, size - 1) , size - 1);
}
template <typename U, typename V>
inline DistanceType accum_dist(const U a, const V b, int ) const
{
DistanceType result = DistanceType();
result = b - a;
if (result > M_PI)
result -= 2. * M_PI;
else if (result < -M_PI)
result += 2. * M_PI;
return result;
}
};
/** SO3 distance functor (Uses L2_Simple)
* Corresponding distance traits: nanoflann::metric_SO3
* \tparam T Type of the elements (e.g. double, float)
* \tparam _DistanceType Type of distance variables (must be signed) (e.g. float, double)
*/
template<class T, class DataSource, typename _DistanceType = T>
struct SO3_Adaptor
{
typedef T ElementType;
typedef _DistanceType DistanceType;
L2_Simple_Adaptor<T, DataSource > distance_L2_Simple;
SO3_Adaptor(const DataSource &_data_source) : distance_L2_Simple(_data_source) { }
inline DistanceType evalMetric(const T* a, const size_t b_idx, size_t size) const {
return distance_L2_Simple.evalMetric(a, b_idx, size);
}
template <typename U, typename V>
inline DistanceType accum_dist(const U a, const V b, int idx) const
{
return distance_L2_Simple.accum_dist(a, b, idx);
}
};
/** Metaprogramming helper traits class for the L1 (Manhattan) metric */
struct metric_L1 : public Metric
{
template<class T, class DataSource>
struct traits {
typedef L1_Adaptor<T, DataSource> distance_t;
};
};
/** Metaprogramming helper traits class for the L2 (Euclidean) metric */
struct metric_L2 : public Metric
{
template<class T, class DataSource>
struct traits {
typedef L2_Adaptor<T, DataSource> distance_t;
};
};
/** Metaprogramming helper traits class for the L2_simple (Euclidean) metric */
struct metric_L2_Simple : public Metric
{
template<class T, class DataSource>
struct traits {
typedef L2_Simple_Adaptor<T, DataSource> distance_t;
};
};
/** Metaprogramming helper traits class for the SO3_InnerProdQuat metric */
struct metric_SO2 : public Metric
{
template<class T, class DataSource>
struct traits {
typedef SO2_Adaptor<T, DataSource> distance_t;
};
};
/** Metaprogramming helper traits class for the SO3_InnerProdQuat metric */
struct metric_SO3 : public Metric
{
template<class T, class DataSource>
struct traits {
typedef SO3_Adaptor<T, DataSource> distance_t;
};
};
/** @} */
/** @addtogroup param_grp Parameter structs
* @{ */
/** Parameters (see README.md) */
struct KDTreeSingleIndexAdaptorParams
{
KDTreeSingleIndexAdaptorParams(size_t _leaf_max_size = 10) :
leaf_max_size(_leaf_max_size)
{}
size_t leaf_max_size;
};
/** Search options for KDTreeSingleIndexAdaptor::findNeighbors() */
struct SearchParams
{
/** Note: The first argument (checks_IGNORED_) is ignored, but kept for compatibility with the FLANN interface */
SearchParams(int checks_IGNORED_ = 32, float eps_ = 0, bool sorted_ = true ) :
checks(checks_IGNORED_), eps(eps_), sorted(sorted_) {}
int checks; //!< Ignored parameter (Kept for compatibility with the FLANN interface).
float eps; //!< search for eps-approximate neighbours (default: 0)
bool sorted; //!< only for radius search, require neighbours sorted by distance (default: true)
};
/** @} */
/** @addtogroup memalloc_grp Memory allocation
* @{ */
/**
* Allocates (using C's malloc) a generic type T.
*
* Params:
* count = number of instances to allocate.
* Returns: pointer (of type T*) to memory buffer
*/
template <typename T>
inline T* allocate(size_t count = 1)
{
T* mem = static_cast<T*>( ::malloc(sizeof(T)*count));
return mem;
}
/**
* Pooled storage allocator
*
* The following routines allow for the efficient allocation of storage in
* small chunks from a specified pool. Rather than allowing each structure
* to be freed individually, an entire pool of storage is freed at once.
* This method has two advantages over just using malloc() and free(). First,
* it is far more efficient for allocating small objects, as there is
* no overhead for remembering all the information needed to free each
* object or consolidating fragmented memory. Second, the decision about
* how long to keep an object is made at the time of allocation, and there
* is no need to track down all the objects to free them.
*
*/
const size_t WORDSIZE = 16;
const size_t BLOCKSIZE = 8192;
class PooledAllocator
{
/* We maintain memory alignment to word boundaries by requiring that all
allocations be in multiples of the machine wordsize. */
/* Size of machine word in bytes. Must be power of 2. */
/* Minimum number of bytes requested at a time from the system. Must be multiple of WORDSIZE. */
size_t remaining; /* Number of bytes left in current block of storage. */
void* base; /* Pointer to base of current block of storage. */
void* loc; /* Current location in block to next allocate memory. */
void internal_init()
{
remaining = 0;
base = NULL;
usedMemory = 0;
wastedMemory = 0;
}
public:
size_t usedMemory;
size_t wastedMemory;
/**
Default constructor. Initializes a new pool.
*/
PooledAllocator() {
internal_init();
}
/**
* Destructor. Frees all the memory allocated in this pool.
*/
~PooledAllocator() {
free_all();
}
/** Frees all allocated memory chunks */
void free_all()
{
while (base != NULL) {
void *prev = *(static_cast<void**>( base)); /* Get pointer to prev block. */
::free(base);
base = prev;
}
internal_init();
}
/**
* Returns a pointer to a piece of new memory of the given size in bytes
* allocated from the pool.
*/
void* malloc(const size_t req_size)
{
/* Round size up to a multiple of wordsize. The following expression
only works for WORDSIZE that is a power of 2, by masking last bits of
incremented size to zero.
*/
const size_t size = (req_size + (WORDSIZE - 1)) & ~(WORDSIZE - 1);
/* Check whether a new block must be allocated. Note that the first word
of a block is reserved for a pointer to the previous block.
*/
if (size > remaining) {
wastedMemory += remaining;
/* Allocate new storage. */
const size_t blocksize = (size + sizeof(void*) + (WORDSIZE - 1) > BLOCKSIZE) ?
size + sizeof(void*) + (WORDSIZE - 1) : BLOCKSIZE;
// use the standard C malloc to allocate memory
void* m = ::malloc(blocksize);
if (!m) {
fprintf(stderr, "Failed to allocate memory.\n");
return NULL;
}
/* Fill first word of new block with pointer to previous block. */
static_cast<void**>(m)[0] = base;
base = m;
size_t shift = 0;
//int size_t = (WORDSIZE - ( (((size_t)m) + sizeof(void*)) & (WORDSIZE-1))) & (WORDSIZE-1);
remaining = blocksize - sizeof(void*) - shift;
loc = (static_cast<char*>(m) + sizeof(void*) + shift);
}
void* rloc = loc;
loc = static_cast<char*>(loc) + size;
remaining -= size;
usedMemory += size;
return rloc;
}
/**
* Allocates (using this pool) a generic type T.
*
* Params:
* count = number of instances to allocate.
* Returns: pointer (of type T*) to memory buffer
*/
template <typename T>
T* allocate(const size_t count = 1)
{
T* mem = static_cast<T*>(this->malloc(sizeof(T)*count));
return mem;
}
};
/** @} */
/** @addtogroup nanoflann_metaprog_grp Auxiliary metaprogramming stuff
* @{ */
// ---------------- CArray -------------------------
/** A STL container (as wrapper) for arrays of constant size defined at compile time (class imported from the MRPT project)
* This code is an adapted version from Boost, modifed for its integration
* within MRPT (JLBC, Dec/2009) (Renamed array -> CArray to avoid possible potential conflicts).
* See
* http://www.josuttis.com/cppcode
* for details and the latest version.
* See
* http://www.boost.org/libs/array for Documentation.
* for documentation.
*
* (C) Copyright Nicolai M. Josuttis 2001.
* Permission to copy, use, modify, sell and distribute this software
* is granted provided this copyright notice appears in all copies.
* This software is provided "as is" without express or implied
* warranty, and with no claim as to its suitability for any purpose.
*
* 29 Jan 2004 - minor fixes (Nico Josuttis)
* 04 Dec 2003 - update to synch with library TR1 (Alisdair Meredith)
* 23 Aug 2002 - fix for Non-MSVC compilers combined with MSVC libraries.
* 05 Aug 2001 - minor update (Nico Josuttis)
* 20 Jan 2001 - STLport fix (Beman Dawes)
* 29 Sep 2000 - Initial Revision (Nico Josuttis)
*
* Jan 30, 2004
*/
template <typename T, std::size_t N>
class CArray {
public:
T elems[N]; // fixed-size array of elements of type T
public:
// type definitions
typedef T value_type;
typedef T* iterator;
typedef const T* const_iterator;
typedef T& reference;
typedef const T& const_reference;
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
// iterator support
inline iterator begin() { return elems; }
inline const_iterator begin() const { return elems; }
inline iterator end() { return elems+N; }
inline const_iterator end() const { return elems+N; }
// reverse iterator support
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) && !defined(BOOST_MSVC_STD_ITERATOR) && !defined(BOOST_NO_STD_ITERATOR_TRAITS)
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
#elif defined(_MSC_VER) && (_MSC_VER == 1300) && defined(BOOST_DINKUMWARE_STDLIB) && (BOOST_DINKUMWARE_STDLIB == 310)
// workaround for broken reverse_iterator in VC7
typedef std::reverse_iterator<std::_Ptrit<value_type, difference_type, iterator,
reference, iterator, reference> > reverse_iterator;
typedef std::reverse_iterator<std::_Ptrit<value_type, difference_type, const_iterator,
const_reference, iterator, reference> > const_reverse_iterator;
#else
// workaround for broken reverse_iterator implementations
typedef std::reverse_iterator<iterator,T> reverse_iterator;
typedef std::reverse_iterator<const_iterator,T> const_reverse_iterator;
#endif
reverse_iterator rbegin() { return reverse_iterator(end()); }
const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); }
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator rend() const { return const_reverse_iterator(begin()); }
// operator[]
inline reference operator[](size_type i) { return elems[i]; }
inline const_reference operator[](size_type i) const { return elems[i]; }
// at() with range check
reference at(size_type i) { rangecheck(i); return elems[i]; }
const_reference at(size_type i) const { rangecheck(i); return elems[i]; }
// front() and back()
reference front() { return elems[0]; }
const_reference front() const { return elems[0]; }
reference back() { return elems[N-1]; }
const_reference back() const { return elems[N-1]; }
// size is constant
static inline size_type size() { return N; }
static bool empty() { return false; }
static size_type max_size() { return N; }
enum { static_size = N };
/** This method has no effects in this class, but raises an exception if the expected size does not match */
inline void resize(const size_t nElements) { if (nElements!=N) throw std::logic_error("Try to change the size of a CArray."); }
// swap (note: linear complexity in N, constant for given instantiation)
void swap (CArray<T,N>& y) { std::swap_ranges(begin(),end(),y.begin()); }
// direct access to data (read-only)
const T* data() const { return elems; }
// use array as C array (direct read/write access to data)
T* data() { return elems; }
// assignment with type conversion
template <typename T2> CArray<T,N>& operator= (const CArray<T2,N>& rhs) {
std::copy(rhs.begin(),rhs.end(), begin());
return *this;
}
// assign one value to all elements
inline void assign (const T& value) { for (size_t i=0;i<N;i++) elems[i]=value; }
// assign (compatible with std::vector's one) (by JLBC for MRPT)
void assign (const size_t n, const T& value) { assert(N==n); for (size_t i=0;i<N;i++) elems[i]=value; }
private:
// check range (may be private because it is static)
static void rangecheck (size_type i) { if (i >= size()) { throw std::out_of_range("CArray<>: index out of range"); } }
}; // end of CArray
/** Used to declare fixed-size arrays when DIM>0, dynamically-allocated vectors when DIM=-1.
* Fixed size version for a generic DIM:
*/
template <int DIM, typename T>
struct array_or_vector_selector
{
typedef CArray<T, DIM> container_t;
};
/** Dynamic size version */
template <typename T>
struct array_or_vector_selector<-1, T> {
typedef std::vector<T> container_t;
};
/** @} */
/** kd-tree base-class
*
* Contains the member functions common to the classes KDTreeSingleIndexAdaptor and KDTreeSingleIndexDynamicAdaptor_.
*
* \tparam Derived The name of the class which inherits this class.
* \tparam DatasetAdaptor The user-provided adaptor (see comments above).
* \tparam Distance The distance metric to use, these are all classes derived from nanoflann::Metric
* \tparam DIM Dimensionality of data points (e.g. 3 for 3D points)
* \tparam IndexType Will be typically size_t or int
*/
template<class Derived, typename Distance, class DatasetAdaptor, int DIM = -1, typename IndexType = size_t>
class KDTreeBaseClass
{
public:
/** Frees the previously-built index. Automatically called within buildIndex(). */
void freeIndex(Derived &obj)
{
obj.pool.free_all();
obj.root_node = NULL;
obj.m_size_at_index_build = 0;
}
typedef typename Distance::ElementType ElementType;
typedef typename Distance::DistanceType DistanceType;
/*--------------------- Internal Data Structures --------------------------*/
struct Node
{
/** Union used because a node can be either a LEAF node or a non-leaf node, so both data fields are never used simultaneously */
union {
struct leaf
{
IndexType left, right; //!< Indices of points in leaf node
} lr;
struct nonleaf
{
int divfeat; //!< Dimension used for subdivision.
DistanceType divlow, divhigh; //!< The values used for subdivision.
} sub;
} node_type;
Node *child1, *child2; //!< Child nodes (both=NULL mean its a leaf node)
};
typedef Node* NodePtr;
struct Interval
{
ElementType low, high;
};
/**
* Array of indices to vectors in the dataset.
*/
std::vector<IndexType> vind;
NodePtr root_node;
size_t m_leaf_max_size;
size_t m_size; //!< Number of current points in the dataset
size_t m_size_at_index_build; //!< Number of points in the dataset when the index was built
int dim; //!< Dimensionality of each data point
/** Define "BoundingBox" as a fixed-size or variable-size container depending on "DIM" */
typedef typename array_or_vector_selector<DIM, Interval>::container_t BoundingBox;
/** Define "distance_vector_t" as a fixed-size or variable-size container depending on "DIM" */
typedef typename array_or_vector_selector<DIM, DistanceType>::container_t distance_vector_t;
/** The KD-tree used to find neighbours */
BoundingBox root_bbox;
/**
* Pooled memory allocator.
*
* Using a pooled memory allocator is more efficient
* than allocating memory directly when there is a large
* number small of memory allocations.
*/
PooledAllocator pool;
/** Returns number of points in dataset */
size_t size(const Derived &obj) const { return obj.m_size; }
/** Returns the length of each point in the dataset */
size_t veclen(const Derived &obj) {
return static_cast<size_t>(DIM>0 ? DIM : obj.dim);
}
/// Helper accessor to the dataset points:
inline ElementType dataset_get(const Derived &obj, size_t idx, int component) const{
return obj.dataset.kdtree_get_pt(idx, component);
}
/**
* Computes the inde memory usage
* Returns: memory used by the index
*/
size_t usedMemory(Derived &obj)
{
return obj.pool.usedMemory + obj.pool.wastedMemory + obj.dataset.kdtree_get_point_count() * sizeof(IndexType); // pool memory and vind array memory
}
void computeMinMax(const Derived &obj, IndexType* ind, IndexType count, int element, ElementType& min_elem, ElementType& max_elem)
{
min_elem = dataset_get(obj, ind[0],element);
max_elem = dataset_get(obj, ind[0],element);
for (IndexType i = 1; i < count; ++i) {
ElementType val = dataset_get(obj, ind[i], element);
if (val < min_elem) min_elem = val;
if (val > max_elem) max_elem = val;
}
}
/**
* Create a tree node that subdivides the list of vecs from vind[first]
* to vind[last]. The routine is called recursively on each sublist.
*
* @param left index of the first vector
* @param right index of the last vector
*/
NodePtr divideTree(Derived &obj, const IndexType left, const IndexType right, BoundingBox& bbox)
{
NodePtr node = obj.pool.template allocate<Node>(); // allocate memory
/* If too few exemplars remain, then make this a leaf node. */
if ( (right - left) <= static_cast<IndexType>(obj.m_leaf_max_size) ) {
node->child1 = node->child2 = NULL; /* Mark as leaf node. */
node->node_type.lr.left = left;
node->node_type.lr.right = right;
// compute bounding-box of leaf points
for (int i = 0; i < (DIM > 0 ? DIM : obj.dim); ++i) {
bbox[i].low = dataset_get(obj, obj.vind[left], i);
bbox[i].high = dataset_get(obj, obj.vind[left], i);
}
for (IndexType k = left + 1; k < right; ++k) {
for (int i = 0; i < (DIM > 0 ? DIM : obj.dim); ++i) {
if (bbox[i].low > dataset_get(obj, obj.vind[k], i)) bbox[i].low = dataset_get(obj, obj.vind[k], i);
if (bbox[i].high < dataset_get(obj, obj.vind[k], i)) bbox[i].high = dataset_get(obj, obj.vind[k], i);
}
}
}
else {
IndexType idx;
int cutfeat;
DistanceType cutval;
middleSplit_(obj, &obj.vind[0] + left, right - left, idx, cutfeat, cutval, bbox);
node->node_type.sub.divfeat = cutfeat;
BoundingBox left_bbox(bbox);
left_bbox[cutfeat].high = cutval;
node->child1 = divideTree(obj, left, left + idx, left_bbox);
BoundingBox right_bbox(bbox);
right_bbox[cutfeat].low = cutval;
node->child2 = divideTree(obj, left + idx, right, right_bbox);
node->node_type.sub.divlow = left_bbox[cutfeat].high;
node->node_type.sub.divhigh = right_bbox[cutfeat].low;
for (int i = 0; i < (DIM > 0 ? DIM : obj.dim); ++i) {
bbox[i].low = std::min(left_bbox[i].low, right_bbox[i].low);
bbox[i].high = std::max(left_bbox[i].high, right_bbox[i].high);
}
}
return node;
}
void middleSplit_(Derived &obj, IndexType* ind, IndexType count, IndexType& index, int& cutfeat, DistanceType& cutval, const BoundingBox& bbox)
{
const DistanceType EPS = static_cast<DistanceType>(0.00001);
ElementType max_span = bbox[0].high-bbox[0].low;
for (int i = 1; i < (DIM > 0 ? DIM : obj.dim); ++i) {
ElementType span = bbox[i].high - bbox[i].low;
if (span > max_span) {
max_span = span;
}
}
ElementType max_spread = -1;
cutfeat = 0;
for (int i = 0; i < (DIM > 0 ? DIM : obj.dim); ++i) {
ElementType span = bbox[i].high-bbox[i].low;
if (span > (1 - EPS) * max_span) {
ElementType min_elem, max_elem;
computeMinMax(obj, ind, count, i, min_elem, max_elem);
ElementType spread = max_elem - min_elem;;
if (spread > max_spread) {
cutfeat = i;
max_spread = spread;
}
}
}
// split in the middle
DistanceType split_val = (bbox[cutfeat].low + bbox[cutfeat].high) / 2;
ElementType min_elem, max_elem;
computeMinMax(obj, ind, count, cutfeat, min_elem, max_elem);
if (split_val < min_elem) cutval = min_elem;
else if (split_val > max_elem) cutval = max_elem;
else cutval = split_val;
IndexType lim1, lim2;
planeSplit(obj, ind, count, cutfeat, cutval, lim1, lim2);