-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEncoderSpec.scala
295 lines (236 loc) · 7.97 KB
/
EncoderSpec.scala
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
package cchantep.sandbox
import org.apache.spark.sql.types._
import org.apache.spark.sql.{ functions => F }
import frameless._
final class EncoderSpec
extends org.specs2.mutable.Specification
with SharedSparkSession {
"Encoder".title
"Value class" should withSpark { implicit spark =>
import spark.implicits._
implicit val sparkDelay: SparkDelay[Job] = Job.framelessSparkDelayForJob
"be read from scalar row" in {
TypedDataset
.createUnsafe[Name1](Seq("Lorem").toDF)
.collect()
.run() must_=== Seq(
new Name1("Lorem")
)
} tag "ok"
"be read as ClassClass1" in {
val df = Seq("""{"name":"Foo"}""").toDF
.withColumn(
"foo",
F.from_json(
F.column("value"),
StructType(
Seq(
StructField("name", StringType, true)
)
)
)
)
.select("foo.*")
TypedDataset.createUnsafe[CaseClass1](df).collect().run() must_=== Seq(
CaseClass1(new Name1("Foo"))
/* Test failure:
Error while decoding: java.lang.RuntimeException: Couldn't find a valid constructor on class cchantep.sandbox.CaseClass1
*/
)
} tag "ko"
"be read as Name2 from scalar row (without fieldEncoder)" in {
TypedDataset
.createUnsafe[Name2](Seq("Lorem").toDF)
.collect()
.run() must_=== Seq(
new Name2("Lorem")
)
}
"be read as ClassClass2" in {
val df =
Seq("""{"name":"Foo"}""", """{"name":"Bar","opt":"ipsum"}""").toDF
.withColumn(
"foo",
F.from_json(
F.column("value"),
StructType(
Seq(
StructField("name", StringType, false),
StructField("opt", StringType, true)
)
)
)
)
.select("foo.*")
implicit def fieldEncoder: TypedEncoder[Name2] = Name2.fieldEncoder
import Name2.optEncoder
implicit val encoder: TypedEncoder[CaseClass2] =
TypedEncoder.usingDerivation
TypedDataset.createUnsafe[CaseClass2](df).collect().run() must_=== Seq(
CaseClass2(new Name2("Foo"), None),
CaseClass2(new Name2("Bar"), Some(new Name2("ipsum")))
)
} tag "ok"
"be read as ClassClass3" in {
val df =
Seq(
"""{"id":"XYZ"}""",
"""{"id":"ABC","lorem":{"name":"Bar"}}""",
"""{"id":"EFG","lorem":{"name":"ipsum","opt":"dolor"}}"""
).toDF
.withColumn(
"foo",
F.from_json(
F.column("value"),
StructType(
Seq(
StructField("id", StringType, false),
StructField(
"lorem",
StructType(
Seq(
StructField("name", StringType, false),
StructField("opt", StringType, true)
)
),
true
)
)
)
)
)
.select("foo.*")
implicit def idEncoder: TypedEncoder[Id1] = Id1.fieldEncoder
implicit def nameEncoder: TypedEncoder[Name2] = Name2.fieldEncoder
import Name2.optEncoder
implicit val encoder: TypedEncoder[CaseClass3] =
TypedEncoder.usingDerivation
TypedDataset.createUnsafe[CaseClass3](df).collect().run() must_=== Seq(
CaseClass3(new Id1("XYZ"), None),
CaseClass3(
new Id1("ABC"),
Some(CaseClass2(name = new Name2("Bar"), opt = None))
),
CaseClass3(
new Id1("EFG"),
Some(
CaseClass2(
name = new Name2("ipsum"),
opt = Some(new Name2("dolor"))
)
)
)
)
} tag "ok"
"set name column on CaseClass2 (failed)" in {
val df =
Seq("""{"name":"XYZ"}""").toDF
.withColumn(
"foo",
F.from_json(
F.column("value"),
StructType(
Seq(
StructField("name", StringType, false),
StructField("opt", StringType, true)
)
)
)
)
.select("foo.*")
implicit def nameEncoder: TypedEncoder[Name2] = Name2.fieldEncoder
import Name2.optEncoder
implicit val encoder: TypedEncoder[CaseClass2] =
TypedEncoder.usingDerivation
/* requirement failed: Literal must have a corresponding value to cchantep.sandbox.Name2, but class Some found. (literals.scala:215) */
TypedDataset
.createUnsafe[CaseClass2](df)
.withColumnReplaced('name, functions.lit(new Name2("Foo")))
.collect()
.run()
.headOption must beSome(CaseClass2(name = new Name2("Foo"), opt = None))
} tag "ko"
"set name column on CaseClass2 (successful)" in {
val df =
Seq("""{"name":"XYZ"}""").toDF
.withColumn(
"foo",
F.from_json(
F.column("value"),
StructType(
Seq(
StructField("name", StringType, false),
StructField("opt", StringType, true)
)
)
)
)
.select("foo.*")
implicit def nameEncoder: TypedEncoder[Name2] = Name2.fieldEncoder
import Name2.optEncoder
implicit val encoder: TypedEncoder[CaseClass2] =
TypedEncoder.usingDerivation
TypedDataset
.createUnsafe[CaseClass2](df)
.withColumnReplaced('name, ValueClassLiteral.lit(new Name2("Foo")))
.collect()
.run()
.headOption must beSome(CaseClass2(name = new Name2("Foo"), opt = None))
} tag "ok"
}
}
// --- Datamodel
final class Name1(val value: String) extends AnyVal {
override def toString = value
}
case class CaseClass1(name: Name1)
final class Name2(val value: String) extends AnyVal
object Name2 {
import org.apache.spark.sql.types.{ DataType, StringType }
import org.apache.spark.sql.catalyst.expressions._ //, objects._
// Only when Value class is used as struct field
def fieldEncoder: TypedEncoder[Name2] = new TypedEncoder[Name2] {
val nullable: Boolean = true
val jvmRepr: DataType = StringType
val catalystRepr: DataType = StringType
def fromCatalyst(path: Expression): Expression =
TypedEncoder.stringEncoder.fromCatalyst(path)
def toCatalyst(path: Expression): Expression =
path // Invoke(path, "value", jvmRepr)
}
implicit def optEncoder: TypedEncoder[Option[Name2]] =
new TypedEncoder[Option[Name2]] {
import org.apache.spark.sql.catalyst.expressions._, objects._
val nullable: Boolean = true
val jvmRepr: DataType = ObjectType(classOf[Name2])
val catalystRepr: DataType = StringType
def toCatalyst(path: Expression): Expression =
fieldEncoder.toCatalyst(UnwrapOption(catalystRepr, path))
def fromCatalyst(path: Expression): Expression = {
val javaValue = fieldEncoder.fromCatalyst(path)
val value = NewInstance(
classOf[Name2],
Seq(javaValue),
jvmRepr
)
WrapOption(value, jvmRepr)
}
}
}
case class CaseClass2(name: Name2, opt: Option[Name2])
final class Id1(val value: String) extends AnyVal
object Id1 {
import org.apache.spark.sql.types.{ DataType, StringType }
import org.apache.spark.sql.catalyst.expressions._, objects._
// Only when Value class is used as struct field
def fieldEncoder: TypedEncoder[Id1] = new TypedEncoder[Id1] {
val nullable: Boolean = true
val jvmRepr: DataType = StringType
val catalystRepr: DataType = StringType
def fromCatalyst(path: Expression): Expression =
TypedEncoder.stringEncoder.fromCatalyst(path)
def toCatalyst(path: Expression): Expression =
Invoke(path, "value", jvmRepr)
}
}
case class CaseClass3(id: Id1, lorem: Option[CaseClass2])