forked from Goodman-lab/DP5
-
Notifications
You must be signed in to change notification settings - Fork 0
/
DP4.py
executable file
·365 lines (226 loc) · 10.4 KB
/
DP4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
# -*- coding: utf-8 -*-
"""
Created on Wed May 27 14:18:37 2015
Updated on July 30 14:18:37 2015
@author: ke291
Equivalent and compact port of DP4.jar to python. The results
produced are essentially equivalent, but not identical due to different
floating point precision used in the Python (53 bits) and Java (32 bits)
implementation.
"""
from scipy import stats
import bisect
import os
import numpy as np
# Standard DP4 parameters
meanC = 0.0
meanH = 0.0
stdevC = 2.269372270818724
stdevH = 0.18731058105269952
class DP4data:
def __init__(self):
self.Cshifts = [] # Carbon shifts used in DP4 calculation
self.Cexp = [] # Carbon experimental shifts used in DP4 calculation
self.Clabels = [] # Carbon atom labels
self.Hshifts = [] # Proton shifts used in DP4 calculation
self.Hexp = [] # Proton experimental shifts used in DP4 calculation
self.Hlabels = [] # Proton atom labels
self.Cscaled = [] # Internally scaled carbon shifts
self.Hscaled = [] # Internally scaled proton shifts
self.Cerrors = [] # Scaled Carbon prediction errors
self.Herrors = [] # Scaled Proton prediction errors
self.Cprobs = [] # Scaled carbon prediction error probabilities
self.Hprobs = [] # Scaled proton prediction error probabilities
self.CDP4probs = [] # Carbon DP4 probabilities
self.HDP4probs = [] # Proton DP4 probabilities
self.DP4probs = [] # combined Carbon and Proton DP4 probabilities
self.output = str() # final DP4 output
def ProcessIsomers(DP4data, Isomers):
# extract calculated and experimental shifts and add to DP4data instance
# Carbon
# make sure any shifts with missing peaks are removed from all isomers
removedC = []
removedH = []
for iso in Isomers:
DP4data.Cshifts.append([])
DP4data.Cexp.append([])
DP4data.Clabels.append([])
for shift, exp, label in zip(iso.Cshifts, iso.Cexp, iso.Clabels):
if exp != '':
DP4data.Cshifts[-1].append(shift)
DP4data.Cexp[-1].append(exp)
DP4data.Clabels[-1].append(label)
elif label not in removedC:
removedC.append(label)
for l in removedC:
for j, Clabel in enumerate(DP4data.Clabels):
if l in Clabel:
i = Clabel.index(l)
DP4data.Cshifts[j].pop(i)
DP4data.Cexp[j].pop(i)
DP4data.Clabels[j].pop(i)
# proton
for iso in Isomers:
DP4data.Hshifts.append([])
DP4data.Hexp.append([])
DP4data.Hlabels.append([])
for shift, exp, label in zip(iso.Hshifts, iso.Hexp, iso.Hlabels):
if exp != '':
DP4data.Hshifts[-1].append(shift)
DP4data.Hexp[-1].append(exp)
DP4data.Hlabels[-1].append(label)
elif label not in removedH:
removedH.append(label)
for l in removedH:
for j, Hlabel in enumerate(DP4data.Hlabels):
if l in Hlabel:
i = Hlabel.index(l)
DP4data.Hshifts[j].pop(i)
DP4data.Hexp[j].pop(i)
DP4data.Hlabels[j].pop(i)
return DP4data
def InternalScaling(DP4data):
# perform internal scaling process
# calculate prediction errors
if len(DP4data.Cexp[0]) > 0:
for Cshifts, Cexp in zip(DP4data.Cshifts, DP4data.Cexp):
DP4data.Cscaled.append(ScaleNMR(Cshifts, Cexp))
for Cscaled, Cexp in zip(DP4data.Cscaled, DP4data.Cexp):
DP4data.Cerrors.append([Cscaled[i] - Cexp[i] for i in range(0, len(Cscaled))])
if len(DP4data.Hexp[0]) > 0:
for Hshifts, Hexp in zip(DP4data.Hshifts, DP4data.Hexp):
DP4data.Hscaled.append(ScaleNMR(Hshifts, Hexp))
for Hscaled, Hexp in zip(DP4data.Hscaled, DP4data.Hexp):
DP4data.Herrors.append([Hscaled[i] - Hexp[i] for i in range(0, len(Hscaled))])
return DP4data
def ScaleNMR(calcShifts, expShifts):
slope, intercept, r_value, p_value, std_err = stats.linregress(expShifts,
calcShifts)
scaled = [(x - intercept) / slope for x in calcShifts]
return scaled
def CalcProbs(DP4data, Settings):
# calculates probability values for each scaled prediction error value using the chosen statistical model
if Settings.StatsModel == 'g' or 'm':
print(Settings.StatsParamFile)
if Settings.StatsParamFile == 'none':
print('No stats model provided, using default')
for errors in DP4data.Cerrors:
DP4data.Cprobs.append([SingleGausProbability(e, meanC, stdevC) for e in errors])
for errors in DP4data.Herrors:
DP4data.Hprobs.append([SingleGausProbability(e, meanH, stdevH) for e in errors])
else:
print('Using stats model provided')
Cmeans, Cstdevs, Hmeans, Hstdevs = ReadParamFile(Settings.StatsParamFile, Settings.StatsModel)
for errors in DP4data.Cerrors:
DP4data.Cprobs.append([MultiGausProbability(e, Cmeans, Cstdevs) for e in errors])
for errors in DP4data.Herrors:
DP4data.Hprobs.append([MultiGausProbability(e, Hmeans, Hstdevs) for e in errors])
return DP4data
def SingleGausProbability(error, mean, stdev):
z = abs((error - mean) / stdev)
cdp4 = 2 * stats.norm.cdf(-z)
return cdp4
def MultiGausProbability(error, means, stdevs):
res = 0
for mean, stdev in zip(means, stdevs):
res += stats.norm(mean, stdev).pdf(error)
return res / len(means)
def ReadParamFile(f, t):
infile = open(f, 'r')
inp = infile.readlines()
infile.close()
if t not in inp[0]:
print("Wrong parameter file type, exiting...")
quit()
if t == 'm':
Cmeans = [float(x) for x in inp[1].split(',')]
Cstdevs = [float(x) for x in inp[2].split(',')]
Hmeans = [float(x) for x in inp[3].split(',')]
Hstdevs = [float(x) for x in inp[4].split(',')]
return Cmeans, Cstdevs, Hmeans, Hstdevs
def CalcDP4(DP4data):
# Calculate Carbon DP4 probabilities
for probs in DP4data.Cprobs:
DP4data.CDP4probs.append(1)
for p in probs:
DP4data.CDP4probs[-1] *= p
# Calculate Proton DP4 probabilities
for probs in DP4data.Hprobs:
DP4data.HDP4probs.append(1)
for p in probs:
DP4data.HDP4probs[-1] *= p
# Calculate Combined DP4 probabilities
for Hp, Cp in zip(DP4data.HDP4probs, DP4data.CDP4probs):
DP4data.DP4probs.append(Hp * Cp)
Cs = sum(DP4data.CDP4probs)
Hs = sum(DP4data.HDP4probs)
Ts = sum(DP4data.DP4probs)
DP4data.CDP4probs = [i / Cs for i in DP4data.CDP4probs]
DP4data.HDP4probs = [i / Hs for i in DP4data.HDP4probs]
DP4data.DP4probs = [i / Ts for i in DP4data.DP4probs]
return DP4data
def PrintAssignment(DP4Data):
isomer = 0
for Clabels, Cshifts, Cexp, Cscaled in zip(DP4Data.Clabels, DP4Data.Cshifts, DP4Data.Cexp, DP4Data.Cscaled):
DP4Data.output += ("\n\nAssigned C shifts for isomer " + str(isomer + 1) + ": ")
PrintNMR(Clabels, Cshifts, Cscaled, Cexp, DP4Data)
isomer += 1
isomer = 0
for Hlabels, Hshifts, Hexp, Hscaled in zip(DP4Data.Hlabels, DP4Data.Hshifts, DP4Data.Hexp, DP4Data.Hscaled):
DP4Data.output += ("\n\nAssigned H shifts for isomer " + str(isomer + 1) + ": ")
PrintNMR(Hlabels, Hshifts, Hscaled, Hexp, DP4Data)
isomer += 1
def PrintNMR(labels, values, scaled, exp, DP4Data):
s = np.argsort(values)
svalues = np.array(values)[s]
slabels = np.array(labels)[s]
sscaled = np.array(scaled)[s]
sexp = np.array(exp)[s]
DP4Data.output += ("\nlabel, calc, corrected, exp, error")
for i in range(len(labels)):
DP4Data.output += ("\n" + format(slabels[i], "6s") + ' ' + format(svalues[i], "6.2f") + ' '
+ format(sscaled[i], "6.2f") + ' ' + format(sexp[i], "6.2f") + ' ' +
format(sexp[i] - sscaled[i], "6.2f"))
def MakeOutput(DP4Data, Isomers, Settings):
# add some info about the calculation
DP4Data.output += Settings.InputFiles[0] + "\n"
DP4Data.output += "\n" + "Solvent = " + Settings.Solvent
DP4Data.output += "\n" + "Force Field = " + Settings.ForceField + "\n"
if 'o' in Settings.Workflow:
DP4Data.output += "\n" + "DFT optimisation Functional = " + Settings.oFunctional
DP4Data.output += "\n" + "DFT optimisation Basis = " + Settings.oBasisSet
if 'e' in Settings.Workflow:
DP4Data.output += "\n" + "DFT energy Functional = " + Settings.eFunctional
DP4Data.output += "\n" + "DFT energy Basis = " + Settings.eBasisSet
if 'n' in Settings.Workflow:
DP4Data.output += "\n" + "DFT NMR Functional = " + Settings.nFunctional
DP4Data.output += "\n" + "DFT NMR Basis = " + Settings.nBasisSet
if Settings.StatsParamFile != "none":
DP4Data.output += "\n\nStats model = " + Settings.StatsParamFile
DP4Data.output += "\n\nNumber of isomers = " + str(len(Isomers))
c = 1
for i in Isomers:
DP4Data.output += "\nNumber of conformers for isomer " + str(c) + " = " + str(len(i.Conformers))
c += 1
PrintAssignment(DP4Data)
DP4Data.output += ("\n\nResults of DP4 using Proton: ")
for i, p in enumerate(DP4Data.HDP4probs):
DP4Data.output += ("\nIsomer " + str(i + 1) + ": " + format(p * 100, "4.1f") + "%")
DP4Data.output += ("\n\nResults of DP4 using Carbon: ")
for i, p in enumerate(DP4Data.CDP4probs):
DP4Data.output += ("\nIsomer " + str(i + 1) + ": " + format(p * 100, "4.1f") + "%")
DP4Data.output += ("\n\nResults of DP4: ")
for i, p in enumerate(DP4Data.DP4probs):
DP4Data.output += ("\nIsomer " + str(i + 1) + ": " + format(p * 100, "4.1f") + "%")
print("number of c protons = " + str(len(Isomers[0].Hlabels)))
print("number of c carbons = " + str(len(Isomers[0].Clabels)))
print("number of e protons = " + str(len(DP4Data.Hexp[0])))
print("number of e carbons = " + str(len(DP4Data.Cexp[0])))
print(DP4Data.output)
if Settings.OutputFolder == '':
out = open(str(os.getcwd()) + "/" + str(Settings.InputFiles[0] + "NMR.dp4"), "w+")
else:
out = open(Settings.OutputFolder + "/" + str(Settings.InputFiles[0] + "NMR.dp4"), "w+")
out.write(DP4Data.output)
out.close()
return DP4Data