forked from cleinc/bts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bts.py
458 lines (378 loc) · 22.4 KB
/
bts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
# Copyright (C) 2019 Jin Han Lee
#
# This file is a part of BTS.
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>
from __future__ import absolute_import, division, print_function
from collections import namedtuple
import numpy as np
import tensorflow as tf
import tensorflow.contrib.slim as slim
import sys
sys.path.append("./custom_layer/")
import _local_planar_guidance_grad
lpg = tf.load_op_library('custom_layer/build/liblpg.so')
bts_parameters = namedtuple('parameters', 'encoder, '
'height, width, '
'max_depth, '
'batch_size, '
'dataset, '
'num_gpus, '
'num_threads, '
'num_epochs, ')
class BtsModel(object):
def __init__(self, params, mode, image, depth_gt, focal, reuse_variables=None, model_index=0, bn_training=False):
self.params = params
self.mode = mode
self.max_depth = self.params.max_depth
self.input_image = image
self.depth_gt = depth_gt
self.focal = tf.cast(focal, tf.float32)
self.model_collection = ['model_' + str(model_index)]
self.reuse_variables = reuse_variables
self.bn_training = bn_training
self.is_training = True if mode == 'train' else False
self.build_model(net_input=self.input_image, reuse=self.reuse_variables)
if self.mode == 'test':
return
self.build_losses()
self.build_summaries()
def upsample_nn(self, x, ratio):
s = tf.shape(x)
h = s[1]
w = s[2]
return tf.image.resize_nearest_neighbor(x, [h * ratio, w * ratio], align_corners=True)
def downsample_nn(self, x, ratio):
s = tf.shape(x)
h = tf.cast(s[1] / ratio, tf.int32)
w = tf.cast(s[2] / ratio, tf.int32)
return tf.image.resize_nearest_neighbor(x, [h, w], align_corners=True)
def conv(self, x, num_out_layers, kernel_size, stride, activation_fn=tf.nn.elu, normalizer_fn=None):
p = np.floor((kernel_size - 1) / 2).astype(np.int32)
p_x = tf.pad(x, [[0, 0], [p, p], [p, p], [0, 0]])
return slim.conv2d(p_x, num_out_layers, kernel_size, stride, 'VALID', activation_fn=activation_fn, normalizer_fn=normalizer_fn)
def atrous_conv(self, x, num_out_layers, kernel_size, rate, apply_bn_first=True):
pk = np.floor((kernel_size - 1) / 2).astype(np.int32)
pr = rate - 1
p = pk + pr
out = tf.pad(x, [[0, 0], [p, p], [p, p], [0, 0]])
if apply_bn_first is True:
out = slim.batch_norm(out)
out = tf.nn.relu(out)
out = slim.conv2d(out, num_out_layers * 2, 1, 1, 'VALID')
out = slim.batch_norm(out)
out = tf.nn.relu(out)
out = slim.conv2d(out, num_out_layers, kernel_size=kernel_size, stride=1, rate=rate, padding='VALID',
activation_fn=None, normalizer_fn=None)
return out
def upconv(self, x, num_out_layers, kernel_size, scale, activation_fn=tf.nn.elu, normalizer_fn=None):
upsample = self.upsample_nn(x, scale)
conv = self.conv(upsample, num_out_layers, kernel_size, 1, activation_fn=activation_fn, normalizer_fn=normalizer_fn)
return conv
@slim.add_arg_scope
def denseconv(self, x, num_filters, kernel_size, stride=1, dilation_rate=1, dropout_rate=None, scope=None):
with tf.variable_scope(scope, 'xx', [x]) as sc:
out = slim.batch_norm(x, is_training=False)
out = tf.nn.relu(out)
out = slim.conv2d(out, num_filters, kernel_size, rate=dilation_rate, activation_fn=None)
if dropout_rate:
out = tf.nn.dropout(out)
return out
@slim.add_arg_scope
def denseconv_block(self, x, num_filters, dilation_rate=1, scope=None):
with tf.variable_scope(scope, 'conv_blockx', [x]) as sc:
out = self.denseconv(x, num_filters * 4, 1, scope='x1')
out = self.denseconv(out, num_filters, 3, dilation_rate=dilation_rate, scope='x2')
out = tf.concat([x, out], axis=3)
return out
@slim.add_arg_scope
def dense_block(self, x, num_layers, num_filters, growth_rate, dilation_rate=1, grow_num_filters=True, scope=None):
with tf.variable_scope(scope, 'dense_blockx', [x]) as sc:
out = x
for i in range(num_layers):
branch = i + 1
out = self.denseconv_block(out, growth_rate, dilation_rate=dilation_rate,
scope='conv_block' + str(branch))
if grow_num_filters:
num_filters += growth_rate
return out, num_filters
@slim.add_arg_scope
def transition_block(self, x, num_filters, compression=1.0, do_pooling=True, scope=None):
num_filters = int(num_filters * compression)
with tf.variable_scope(scope, 'transition_blockx', [x]) as sc:
out = self.denseconv(x, num_filters, 1, scope='blk')
if do_pooling:
out = slim.avg_pool2d(out, 2)
return out, num_filters
@slim.add_arg_scope
def reduction_1x1(self, net, num_filters, is_final=False):
while num_filters >= 4:
if num_filters < 8:
if is_final:
net = self.conv(net, 1, 1, 1, activation_fn=tf.nn.sigmoid)
else:
net = self.conv(net, 3, 1, 1, activation_fn=None)
theta = tf.nn.sigmoid(net[:, :, :, 0]) * 3.1415926535 / 6
phi = tf.nn.sigmoid(net[:, :, :, 1]) * 3.1415926535 * 2
dist = tf.nn.sigmoid(net[:, :, :, 2]) * self.max_depth
n1 = tf.expand_dims(tf.multiply(tf.math.sin(theta), tf.math.cos(phi)), 3)
n2 = tf.expand_dims(tf.multiply(tf.math.sin(theta), tf.math.sin(phi)), 3)
n3 = tf.expand_dims(tf.math.cos(theta), 3)
n4 = tf.expand_dims(dist, 3)
net = tf.concat([n1, n2, n3, n4], axis=3)
break
else:
net = self.conv(net, num_filters, 1, 1)
num_filters = num_filters / 2
return net
def get_depth(self, x):
depth = self.max_depth * self.conv(x, 1, 3, 1, tf.nn.sigmoid, normalizer_fn=None)
if self.params.dataset == 'kitti':
focal_expanded = tf.expand_dims(self.focal, 1)
focal_expanded = tf.expand_dims(focal_expanded, 1)
focal_expanded = tf.expand_dims(focal_expanded, 1)
depth = depth * focal_expanded / 715.0873 # Average focal length in KITTI Eigen training set
return depth
def densenet(self, inputs, reduction=None, growth_rate=None, num_filters=None, num_layers=None, dropout_rate=None,
is_training=True, reuse=None, scope=None):
assert reduction is not None
assert growth_rate is not None
assert num_filters is not None
assert num_layers is not None
compression = 1.0 - reduction
num_dense_blocks = len(num_layers)
batch_norm_params = {'is_training': False,
'scale': True,
'decay': 0.99,
'epsilon': 1.1e-5,
'fused': True, }
with tf.variable_scope(scope, 'densenetxxx', [inputs], reuse=reuse) as sc:
with slim.arg_scope([slim.dropout], is_training=is_training),\
slim.arg_scope([slim.batch_norm], **batch_norm_params),\
slim.arg_scope([slim.conv2d], weights_regularizer=slim.l2_regularizer(1e-4), activation_fn=None, biases_initializer=None):
skips = []
net = inputs
# Initial convolution
net = slim.conv2d(net, num_filters, 7, stride=2, scope='conv1') # H/2
net = slim.batch_norm(net, is_training=False)
net = tf.nn.relu(net)
skips.append(net)
net = slim.max_pool2d(net, 3, stride=2, padding='SAME') # H/4
skips.append(net)
# Blocks
for i in range(num_dense_blocks - 1): # i:0 H/8, i:1 H/16, i:2 H/32
do_pooling = True
dilation_rate = 1
net, num_filters = self.dense_block(net, num_layers[i], num_filters, growth_rate,
dilation_rate=dilation_rate, scope='dense_block' + str(i + 1))
# Add transition_block
net, num_filters = self.transition_block(net, num_filters, compression=compression,
do_pooling=do_pooling,
scope='transition_block' + str(i + 1))
if i < num_dense_blocks - 2:
skips.append(net)
net, num_filters = self.dense_block(net, num_layers[-1], num_filters, growth_rate,
scope='dense_block' + str(num_dense_blocks))
with tf.variable_scope('final_block', [inputs]):
net = slim.batch_norm(net, is_training=False)
net = tf.nn.relu(net)
return net, skips
@slim.add_arg_scope
def bts(self, dense_features, skips, num_filters=256):
batch_norm_params = {'is_training': self.bn_training,
'scale': True,
'decay': 0.99,
'epsilon': 1.1e-5,
'fused': True, }
with slim.arg_scope([slim.batch_norm], **batch_norm_params):
conv = self.conv
atrous_conv = self.atrous_conv
upconv = self.upconv
upconv5 = upconv(dense_features, num_filters, 3, 2) # H/16
upconv5 = slim.batch_norm(upconv5)
concat5 = tf.concat([upconv5, skips[3]], 3)
iconv5 = conv(concat5, num_filters, 3, 1)
num_filters = num_filters / 2
upconv4 = upconv(iconv5, num_filters, 3, 2) # H/8
upconv4 = slim.batch_norm(upconv4)
concat4 = tf.concat([upconv4, skips[2]], 3)
iconv4 = conv(concat4, num_filters, 3, 1)
iconv4 = slim.batch_norm(iconv4)
daspp_3 = atrous_conv(iconv4, num_filters / 2, kernel_size=3, rate=3, apply_bn_first=False)
concat4_2 = tf.concat([concat4, daspp_3], 3)
daspp_6 = atrous_conv(concat4_2, num_filters / 2, kernel_size=3, rate=6)
concat4_3 = tf.concat([concat4_2, daspp_6], 3)
daspp_12 = atrous_conv(concat4_3, num_filters / 2, kernel_size=3, rate=12)
concat4_4 = tf.concat([concat4_3, daspp_12], 3)
daspp_18 = atrous_conv(concat4_4, num_filters / 2, kernel_size=3, rate=18)
concat4_5 = tf.concat([concat4_4, daspp_18], 3)
daspp_24 = atrous_conv(concat4_5, num_filters / 2, kernel_size=3, rate=24)
concat4_daspp = tf.concat([iconv4, daspp_3, daspp_6, daspp_12, daspp_18, daspp_24], 3)
daspp_feat = conv(concat4_daspp, num_filters / 2, 3, 1)
plane_eq_8x8 = self.reduction_1x1(daspp_feat, num_filters / 2)
plane_normal_8x8 = tf.nn.l2_normalize(plane_eq_8x8[:, :, :, 0:3], axis=3)
plane_dist_8x8 = plane_eq_8x8[:, :, :, 3]
plane_eq_8x8 = tf.concat([plane_normal_8x8, tf.expand_dims(plane_dist_8x8, 3)], 3)
depth_8x8 = lpg.local_planar_guidance(plane_eq_8x8, upratio=8, focal=self.focal)
depth_8x8_scaled = tf.expand_dims(depth_8x8, 3) / self.max_depth
depth_8x8_scaled_ds = self.downsample_nn(depth_8x8_scaled, 4)
num_filters = num_filters / 2
upconv3 = upconv(daspp_feat, num_filters, 3, 2) # H/4
upconv3 = slim.batch_norm(upconv3)
concat3 = tf.concat([upconv3, skips[1], depth_8x8_scaled_ds], 3)
iconv3 = conv(concat3, num_filters, 3, 1)
plane_eq_4x4 = self.reduction_1x1(iconv3, num_filters / 2)
plane_normal_4x4 = tf.nn.l2_normalize(plane_eq_4x4[:, :, :, 0:3], axis=3)
plane_dist_4x4 = plane_eq_4x4[:, :, :, 3]
plane_eq_4x4 = tf.concat([plane_normal_4x4, tf.expand_dims(plane_dist_4x4, 3)], 3)
depth_4x4 = lpg.local_planar_guidance(plane_eq_4x4, upratio=4, focal=self.focal)
depth_4x4_scaled = tf.expand_dims(depth_4x4, 3) / self.max_depth
depth_4x4_scaled_ds = self.downsample_nn(depth_4x4_scaled, 2)
num_filters = num_filters / 2
upconv2 = upconv(iconv3, num_filters, 3, 2) # H/2
upconv2 = slim.batch_norm(upconv2)
concat2 = tf.concat([upconv2, skips[0], depth_4x4_scaled_ds], 3)
iconv2 = conv(concat2, num_filters, 3, 1)
plane_eq_2x2 = self.reduction_1x1(iconv2, num_filters / 2)
plane_normal_2x2 = tf.nn.l2_normalize(plane_eq_2x2[:, :, :, 0:3], axis=3)
plane_dist_2x2 = plane_eq_2x2[:, :, :, 3]
plane_eq_2x2 = tf.concat([plane_normal_2x2, tf.expand_dims(plane_dist_2x2, 3)], 3)
depth_2x2 = lpg.local_planar_guidance(plane_eq_2x2, upratio=2, focal=self.focal)
depth_2x2_scaled = tf.expand_dims(depth_2x2, 3) / self.max_depth
num_filters = num_filters / 2
upconv1 = upconv(iconv2, num_filters, 3, 2) # H
reduc1x1 = self.reduction_1x1(upconv1, num_filters, is_final=True)
concat1 = tf.concat([upconv1, reduc1x1, depth_2x2_scaled, depth_4x4_scaled, depth_8x8_scaled], 3)
iconv1 = conv(concat1, num_filters, 3, 1)
self.depth_est = self.get_depth(iconv1)
self.lpg2x2 = depth_2x2_scaled
self.lpg4x4 = depth_4x4_scaled
self.lpg8x8 = depth_8x8_scaled
self.reduc1x1 = reduc1x1
print("==================================")
print(" upconv5 in/out: {} / {}".format(dense_features.shape[-1], upconv5.shape[-1]))
print(" iconv5 in/out: {} / {}".format(concat5.shape[-1], iconv5.shape[-1]))
print(" upconv4 in/out: {} / {}".format(iconv5.shape[-1], upconv4.shape[-1]))
print(" iconv4 in/out: {} / {}".format(concat4.shape[-1], iconv4.shape[-1]))
print(" aspp in/out: {} / {}".format(concat4_daspp.shape[-1], daspp_feat.shape[-1]))
print("reduc8x8 in/out: {} / {}".format(daspp_feat.shape[-1], plane_eq_8x8.shape[-1]))
print(" lpg8x8 in/out: {} / {}".format(plane_eq_8x8.shape[-1], 1))
print(" upconv3 in/out: {} / {}".format(daspp_feat.shape[-1], upconv3.shape[-1]))
print(" iconv3 in/out: {} / {}".format(concat3.shape[-1], iconv3.shape[-1]))
print("reduc4x4 in/out: {} / {}".format(iconv3.shape[-1], plane_eq_4x4.shape[-1]))
print(" lpg4x4 in/out: {} / {}".format(plane_eq_4x4.shape[-1], 1))
print(" upconv2 in/out: {} / {}".format(iconv3.shape[-1], upconv2.shape[-1]))
print(" iconv2 in/out: {} / {}".format(concat2.shape[-1], iconv2.shape[-1]))
print("reduc2x2 in/out: {} / {}".format(iconv2.shape[-1], plane_eq_2x2.shape[-1]))
print(" lpg2x2 in/out: {} / {}".format(plane_eq_2x2.shape[-1], 1))
print(" upconv1 in/out: {} / {}".format(iconv2.shape[-1], upconv1.shape[-1]))
print("reduc1x1 in/out: {} / {}".format(upconv1.shape[-1], reduc1x1.shape[-1]))
print(" iconv1 in/out: {} / {}".format(concat1.shape[-1], iconv1.shape[-1]))
print(" depth in/out: {} / {}".format(iconv1.shape[-1], self.depth_est.shape[-1]))
print("==================================")
def build_resnet101_bts(self, net_input, reuse):
batch_norm_params = {
'is_training': False,
'decay': 0.997,
'epsilon': 1e-5,
'scale': True,
'fused': True, # Use fused batch norm if possible.
}
with tf.variable_scope('encoder'):
with slim.arg_scope([slim.conv2d],
weights_regularizer=slim.l2_regularizer(1e-4),
weights_initializer=slim.variance_scaling_initializer(),
activation_fn=tf.nn.relu,
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params),\
slim.arg_scope([slim.batch_norm], **batch_norm_params),\
slim.arg_scope([slim.max_pool2d], padding='SAME'):
dense_features, skips, endpoints = resnet_v1_101(net_input, global_pool=False, spatial_squeeze=False,
is_training=self.is_training, reuse=reuse, scope='resnet101')
with tf.variable_scope('decoder'):
with slim.arg_scope([slim.conv2d, slim.conv2d_transpose], activation_fn=tf.nn.elu):
self.bts(dense_features, skips, num_filters=512)
def build_resnet50_bts(self, net_input, reuse):
batch_norm_params = {
'is_training': False,
'decay': 0.997,
'epsilon': 1e-5,
'scale': True,
'fused': True, # Use fused batch norm if possible.
}
with tf.variable_scope('encoder'):
with slim.arg_scope([slim.conv2d],
weights_regularizer=slim.l2_regularizer(1e-4),
weights_initializer=slim.variance_scaling_initializer(),
activation_fn=tf.nn.relu,
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params), \
slim.arg_scope([slim.batch_norm], **batch_norm_params), \
slim.arg_scope([slim.max_pool2d], padding='SAME'):
dense_features, skips, endpoints = resnet_v1_50(net_input, global_pool=False, spatial_squeeze=False,
is_training=self.is_training, reuse=reuse, scope='resnet50')
with tf.variable_scope('decoder'):
with slim.arg_scope([slim.conv2d, slim.conv2d_transpose], activation_fn=tf.nn.elu):
self.bts(dense_features, skips, num_filters=256)
def build_densenet121_bts(self, net_input, reuse):
with tf.variable_scope('encoder'):
dense_features, skips = self.densenet(net_input, reduction=0.5, growth_rate=32,
num_filters=self.num_filters, num_layers=[6, 12, 24, 16],
is_training=self.is_training, reuse=reuse, scope='densenet121')
with tf.variable_scope('decoder'):
with slim.arg_scope([slim.conv2d, slim.conv2d_transpose], activation_fn=tf.nn.elu):
self.bts(dense_features, skips, num_filters=256)
def build_densenet161_bts(self, net_input, reuse):
with tf.variable_scope('encoder'):
dense_features, skips = self.densenet(net_input, reduction=0.5, growth_rate=48,
num_filters=self.num_filters, num_layers=[6, 12, 36, 24],
is_training=self.is_training, reuse=reuse, scope='densenet161')
with tf.variable_scope('decoder'):
with slim.arg_scope([slim.conv2d, slim.conv2d_transpose], activation_fn=tf.nn.elu):
self.bts(dense_features, skips, num_filters=512)
def build_model(self, net_input, reuse):
with tf.variable_scope('model', reuse=reuse):
if self.params.encoder == 'densenet161_bts':
self.num_filters = 96
self.build_densenet161_bts(net_input=net_input, reuse=reuse)
elif self.params.encoder == 'densenet121_bts':
self.num_filters = 64
self.build_densenet121_bts(net_input=net_input, reuse=reuse)
elif self.params.encoder == 'resnet101_bts':
self.build_resnet101_bts(net_input=net_input, reuse=reuse)
elif self.params.encoder == 'resnet50_bts':
self.build_resnet50_bts(net_input=net_input, reuse=reuse)
else:
return None
def build_losses(self):
with tf.variable_scope('losses', reuse=self.reuse_variables):
if self.params.dataset == 'nyu':
self.mask = self.depth_gt > 0.1
else:
self.mask = self.depth_gt > 1.0
depth_gt_masked = tf.boolean_mask(self.depth_gt, self.mask)
depth_est_masked = tf.boolean_mask(self.depth_est, self.mask)
d = tf.log(depth_est_masked) - tf.log(depth_gt_masked) # Best
self.silog_loss = tf.sqrt(tf.reduce_mean(d ** 2) - 0.85 * (tf.reduce_mean(d) ** 2)) * 10.0
self.total_loss = self.silog_loss
def build_summaries(self):
with tf.device('/cpu:0'):
tf.summary.scalar('silog_loss', self.silog_loss, collections=self.model_collection)
depth_gt = tf.where(self.depth_gt < 1e-3, self.depth_gt * 0 + 1e3, self.depth_gt)
tf.summary.image('depth_gt', 1 / depth_gt, max_outputs=4, collections=self.model_collection)
tf.summary.image('depth_est', 1 / self.depth_est, max_outputs=4, collections=self.model_collection)
tf.summary.image('reduc1x1', 1 / self.reduc1x1, max_outputs=4, collections=self.model_collection)
tf.summary.image('lpg2x2', 1 / self.lpg2x2, max_outputs=4, collections=self.model_collection)
tf.summary.image('lpg4x4', 1 / self.lpg4x4, max_outputs=4, collections=self.model_collection)
tf.summary.image('lpg8x8', 1 / self.lpg8x8, max_outputs=4, collections=self.model_collection)
tf.summary.image('image', self.input_image, max_outputs=4, collections=self.model_collection)