-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathhan.py
224 lines (162 loc) · 7.8 KB
/
han.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import argparse
import pickle as pkl
from tqdm import tqdm
import math
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torch.utils.data.sampler import Sampler
import torch.nn.functional as F
from Nets import NSCUPA, HAN
from Data import TuplesListDataset, Vectorizer
from fmtl import FMTL
from utils import *
import sys
def save(net,dic,path):
"""
Saves a model's state and it's embedding dic by piggybacking torch's save function
"""
dict_m = net.state_dict()
dict_m["word_dic"] = dic
torch.save(dict_m,path)
def tuple_batch(l):
"""
Prepare batch
- Reorder reviews by length
- Split reviews by sentences which are reordered by length
- Build sentence ordering index to extract each sentences in training loop
"""
_,_,review,rating = zip(*l)
r_t = torch.Tensor(rating).long()
list_rev = review
sorted_r = sorted([(len(r),r_n,r) for r_n,r in enumerate(list_rev)],reverse=True) #index by desc rev_le
lr,r_n,ordered_list_rev = zip(*sorted_r)
lr = list(lr)
max_sents = lr[0]
#reordered
r_t = r_t[[r_n]]
review = [review[x] for x in r_n]
stat = sorted([(len(s),r_n,s_n,s) for r_n,r in enumerate(ordered_list_rev) for s_n,s in enumerate(r)],reverse=True)
max_words = stat[0][0]
ls = []
batch_t = torch.zeros(len(stat),max_words).long() # (sents ordered by len)
sent_order = torch.zeros(len(ordered_list_rev),max_sents).long().fill_(0) # (rev_n,sent_n)
for i,s in enumerate(stat):
sent_order[s[1],s[2]] = i+1 #i+1 because 0 is for empty.
batch_t[i,0:len(s[3])] = torch.LongTensor(s[3])
ls.append(s[0])
return batch_t,r_t,sent_order,ls,lr,review
def train(epoch,net,dataset,device,msg="val/test",optimize=False,optimizer=None,criterion=None):
if optimize:
net.train()
else:
net.eval()
epoch_loss = 0
mean_mse = 0
mean_rmse = 0
ok_all = 0
#data_tensors = new_tensors(3,cuda,types={0:torch.LongTensor,1:torch.LongTensor,2:torch.LongTensor}) #data-tensors
with tqdm(total=len(dataset),desc=msg) as pbar:
for iteration, (batch_t,r_t,sent_order,ls,lr,review) in enumerate(dataset):
data = (batch_t,r_t,sent_order)
data = list(map(lambda x:x.to(device),data))
if optimize:
optimizer.zero_grad()
out = net(data[0],data[2],ls,lr)
ok,per,val_i = accuracy(out,data[1])
ok_all += per.item()
mseloss = F.mse_loss(val_i,data[1].float())
mean_rmse += math.sqrt(mseloss.item())
mean_mse += mseloss.item()
if optimize:
loss = criterion(out, data[1])
epoch_loss += loss.item()
loss.backward()
optimizer.step()
pbar.update(1)
pbar.set_postfix({"acc":ok_all/(iteration+1),"CE":epoch_loss/(iteration+1),"mseloss":mean_mse/(iteration+1),"rmseloss":mean_rmse/(iteration+1)})
print("===> Epoch {} Complete: Avg. Loss: {:.4f}, {}% accuracy".format(epoch, epoch_loss /len(dataset),ok_all/len(dataset)))
def load(args):
datadict = pkl.load(open(args.filename,"rb"))
data_tl,(trainit,valit,testit) = FMTL_train_val_test(datadict["data"],datadict["splits"],args.split,validation=0.5,rows=datadict["rows"])
rating_mapping = data_tl.get_field_dict("rating",key_iter=trainit) #creates class mapping
data_tl.set_mapping("rating",rating_mapping)
if args.load:
state = torch.load(args.load)
wdict = state["word_dic"]
else:
if args.emb:
tensor,wdict = load_embeddings(args.emb,offset=2)
else:
wdict = data_tl.get_field_dict("review",key_iter=trainit,offset=2, max_count=args.max_feat, iter_func=(lambda x: (w for s in x for w in s )))
wdict["_pad_"] = 0
wdict["_unk_"] = 1
if args.max_words > 0 and args.max_sents > 0:
print("==> Limiting review and sentence length: ({} sents of {} words) ".format(args.max_sents,args.max_words))
data_tl.set_mapping("review",(lambda f:[[wdict.get(w[:args.max_words],1) for w in s[:args.max_sents]] for s in f]))
else:
data_tl.set_mapping("review",wdict,unk=1)
print("Train set class stats:\n" + 10*"-")
_,_ = data_tl.get_stats("rating",trainit,True)
if args.load:
#print(state.keys())
net = HAN(ntoken=len(state["word_dic"]),emb_size=state["embed.weight"].size(1),hid_size=state["sent.rnn.weight_hh_l0"].size(1),num_class=state["lin_out.weight"].size(0))
del state["word_dic"]
net.load_state_dict(state)
else:
if args.emb:
net = HAN(ntoken=len(wdict),emb_size=len(tensor[1]),hid_size=args.hid_size,num_class=len(rating_mapping))
net.set_emb_tensor(torch.FloatTensor(tensor))
else:
net = HAN(ntoken=len(wdict), emb_size=args.emb_size,hid_size=args.hid_size, num_class=len(rating_mapping))
if args.prebuild:
data_tl = FMTL(list(x for x in tqdm(data_tl,desc="prebuilding")),data_tl.rows)
return data_tl,(trainit,valit,testit), net, wdict
def main(args):
print(32*"-"+"\nHierarchical Attention Network:\n" + 32*"-")
data_tl, (train_set, val_set, test_set), net, wdict = load(args)
dataloader = DataLoader(data_tl.indexed_iter(train_set), batch_size=args.b_size, shuffle=True, num_workers=3, collate_fn=tuple_batch,pin_memory=True)
dataloader_valid = DataLoader(data_tl.indexed_iter(val_set), batch_size=args.b_size, shuffle=False, num_workers=3, collate_fn=tuple_batch)
dataloader_test = DataLoader(data_tl.indexed_iter(test_set), batch_size=args.b_size, shuffle=False, num_workers=3, collate_fn=tuple_batch)
criterion = torch.nn.CrossEntropyLoss()
device = torch.device("cuda" if args.cuda else "cpu")
if args.cuda:
net.to(device)
print("-"*20)
optimizer = optim.Adam(net.parameters())
torch.nn.utils.clip_grad_norm(net.parameters(), args.clip_grad)
for epoch in range(1, args.epochs + 1):
print("\n-------EPOCH {}-------".format(epoch))
train(epoch,net,dataloader,device,msg="training",optimize=True,optimizer=optimizer,criterion=criterion)
if args.snapshot:
print("snapshot of model saved as {}".format(args.save+"_snapshot"))
save(net,wdict,args.save+"_snapshot")
train(epoch,net,dataloader_valid,device,msg="Validation")
train(epoch,net,dataloader_test,device,msg="Evaluation")
if args.save:
print("model saved to {}".format(args.save))
save(net,wdict,args.save)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Hierarchical Attention Networks for Document Classification')
parser.add_argument("--emb-size",type=int,default=200)
parser.add_argument("--hid-size",type=int,default=100)
parser.add_argument("--max-feat", type=int,default=10000)
parser.add_argument("--epochs", type=int,default=10)
parser.add_argument("--clip-grad", type=float,default=1)
parser.add_argument("--lr", type=float, default=0.01)
parser.add_argument("--momentum",type=float,default=0.9)
parser.add_argument("--b-size", type=int, default=32)
parser.add_argument("--emb", type=str)
parser.add_argument("--max-words", type=int,default=-1)
parser.add_argument("--max-sents",type=int,default=-1)
parser.add_argument("--split", type=int, default=0)
parser.add_argument("--load", type=str)
parser.add_argument("--save", type=str)
parser.add_argument("--snapshot", action='store_true')
parser.add_argument("--prebuild",action="store_true")
parser.add_argument('--cuda', action='store_true', help='use CUDA')
parser.add_argument("--output", type=str)
parser.add_argument('filename', type=str)
args = parser.parse_args()
main(args)