forked from bastibe/Violinplot-Matlab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Violin.m
712 lines (640 loc) · 31.6 KB
/
Violin.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
classdef Violin < handle
% Violin creates violin plots for some data
% A violin plot is an easy to read substitute for a box plot
% that replaces the box shape with a kernel density estimate of
% the data, and optionally overlays the data points itself.
% It is also possible to provide two sets of data which are supposed
% to be compared by plotting each column of the two datasets together
% on each side of the violin.
%
% Additional constructor parameters include the width of the
% plot, the bandwidth of the kernel density estimation, the
% X-axis position of the violin plot, and the categories.
%
% Use <a href="matlab:help('violinplot')">violinplot</a> for a
% <a href="matlab:help('boxplot')">boxplot</a>-like wrapper for
% interactive plotting.
%
% See for more information on Violin Plots:
% J. L. Hintze and R. D. Nelson, "Violin plots: a box
% plot-density trace synergism," The American Statistician, vol.
% 52, no. 2, pp. 181-184, 1998.
%
% Violin Properties:
% ViolinColor - Fill color of the violin area and data points.
% Can be either a matrix nx3 or an array of up to two
% cells containing nx3 matrices.
% Defaults to the next default color cycle.
% ViolinAlpha - Transparency of the violin area and data points.
% Can be either a single scalar value or an array of
% up to two cells containing scalar values.
% Defaults to 0.3.
% EdgeColor - Color of the violin area outline.
% Defaults to [0.5 0.5 0.5]
% BoxColor - Color of the box, whiskers, and the outlines of
% the median point and the notch indicators.
% Defaults to [0.5 0.5 0.5]
% MedianColor - Fill color of the median and notch indicators.
% Defaults to [1 1 1]
% ShowData - Whether to show data points.
% Defaults to true
% ShowNotches - Whether to show notch indicators.
% Defaults to false
% ShowMean - Whether to show mean indicator.
% Defaults to false
% ShowBox - Whether to show the box.
% Defaults to true
% ShowMedian - Whether to show the median indicator.
% Defaults to true
% ShowWhiskers - Whether to show the whiskers
% Defaults to true
% HalfViolin - Whether to do a half violin(left, right side) or
% full. Defaults to full.
% QuartileStyle - Option on how to display quartiles, with a
% boxplot, shadow or none. Defaults to boxplot.
% DataStyle - Defines the style to show the data points. Opts:
% 'scatter', 'histogram' or 'none'. Default is 'scatter'.
%
%
% Violin Children:
% ScatterPlot - <a href="matlab:help('scatter')">scatter</a> plot of the data points
% ScatterPlot2 - <a href="matlab:help('scatter')">scatter</a> second plot of the data points
% ViolinPlot - <a href="matlab:help('fill')">fill</a> plot of the kernel density estimate
% ViolinPlot2 - <a href="matlab:help('fill')">fill</a> second plot of the kernel density estimate
% BoxPlot - <a href="matlab:help('fill')">fill</a> plot of the box between the quartiles
% WhiskerPlot - line <a href="matlab:help('plot')">plot</a> between the whisker ends
% MedianPlot - <a href="matlab:help('scatter')">scatter</a> plot of the median (one point)
% NotchPlots - <a href="matlab:help('scatter')">scatter</a> plots for the notch indicators
% MeanPlot - line <a href="matlab:help('plot')">plot</a> at mean value
% Copyright (c) 2016, Bastian Bechtold
% This code is released under the terms of the BSD 3-clause license
properties (Access=public)
ScatterPlot % scatter plot of the data points
ScatterPlot2 % comparison scatter plot of the data points
ViolinPlot % fill plot of the kernel density estimate
ViolinPlot2 % comparison fill plot of the kernel density estimate
BoxPlot % fill plot of the box between the quartiles
WhiskerPlot % line plot between the whisker ends
MedianPlot % scatter plot of the median (one point)
NotchPlots % scatter plots for the notch indicators
MeanPlot % line plot of the mean (horizontal line)
HistogramPlot % histogram of the data
ViolinPlotQ % fill plot of the Quartiles as shadow
end
properties (Dependent=true)
ViolinColor % fill color of the violin area and data points
ViolinAlpha % transparency of the violin area and data points
MarkerSize % marker size for the data dots
MedianMarkerSize % marker size for the median dot
LineWidth % linewidth of the median plot
EdgeColor % color of the violin area outline
BoxColor % color of box, whiskers, and median/notch edges
BoxWidth % width of box between the quartiles in axis space (default 10% of Violin plot width, 0.03)
MedianColor % fill color of median and notches
ShowData % whether to show data points
ShowNotches % whether to show notch indicators
ShowMean % whether to show mean indicator
ShowBox % whether to show the box
ShowMedian % whether to show the median line
ShowWhiskers % whether to show the whiskers
HalfViolin % whether to do a half violin(left, right side) or full
end
methods
function obj = Violin(data, pos, varargin)
%Violin plots a violin plot of some data at pos
% VIOLIN(DATA, POS) plots a violin at x-position POS for
% a vector of DATA points.
%
% VIOLIN(..., 'PARAM1', val1, 'PARAM2', val2, ...)
% specifies optional name/value pairs:
% 'Width' Width of the violin in axis space.
% Defaults to 0.3
% 'Bandwidth' Bandwidth of the kernel density
% estimate. Should be between 10% and
% 40% of the data range.
% 'ViolinColor' Fill color of the violin area
% and data points.Can be either a matrix
% nx3 or an array of up to two cells
% containing nx3 matrices.
% 'ViolinAlpha' Transparency of the violin area and data
% points. Can be either a single scalar
% value or an array of up to two cells
% containing scalar values. Defaults to 0.3.
% 'MarkerSize' Size of the data points, if shown.
% Defaults to 24
% 'MedianMarkerSize' Size of the median indicator, if shown.
% Defaults to 36
% 'EdgeColor' Color of the violin area outline.
% Defaults to [0.5 0.5 0.5]
% 'BoxColor' Color of the box, whiskers, and the
% outlines of the median point and the
% notch indicators. Defaults to
% [0.5 0.5 0.5]
% 'MedianColor' Fill color of the median and notch
% indicators. Defaults to [1 1 1]
% 'ShowData' Whether to show data points.
% Defaults to true
% 'ShowNotches' Whether to show notch indicators.
% Defaults to false
% 'ShowMean' Whether to show mean indicator.
% Defaults to false
% 'ShowBox' Whether to show the box
% Defaults to true
% 'ShowMedian' Whether to show the median line
% Defaults to true
% 'ShowWhiskers' Whether to show the whiskers
% Defaults to true
% 'HalfViolin' Whether to do a half violin(left, right side) or
% full. Defaults to full.
% 'QuartileStyle' Option on how to display quartiles, with a
% boxplot or as a shadow. Defaults to boxplot.
% 'DataStyle' Defines the style to show the data points. Opts:
% 'scatter', 'histogram' or 'none'. Default is 'Scatter'.
st = dbstack; % get the calling function for reporting errors
namefun = st.name;
args = obj.checkInputs(data, pos, varargin{:});
if length(data)==1
data2 = [];
data = data{1};
else
data2 = data{2};
data = data{1};
end
if isempty(args.ViolinColor)
Release= strsplit(version('-release'), {'a','b'}); %Check release
if str2num(Release{1})> 2019 || strcmp(version('-release'), '2019b')
C = colororder;
else
C = lines;
end
if pos > length(C)
C = lines;
end
args.ViolinColor = {repmat(C,ceil(size(data,2)/length(C)),1)};
end
data = data(not(isnan(data)));
data2 = data2(not(isnan(data2)));
if numel(data) == 1
obj.MedianPlot = scatter(pos, data, 'filled');
obj.MedianColor = args.MedianColor;
obj.MedianPlot.MarkerEdgeColor = args.EdgeColor;
return
end
hold('on');
%% Calculate kernel density estimation for the violin
[density, value, width] = obj.calcKernelDensity(data, args.Bandwidth, args.Width);
% also calculate the kernel density of the comparison data if
% provided
if ~isempty(data2)
[densityC, valueC, widthC] = obj.calcKernelDensity(data2, args.Bandwidth, args.Width);
end
%% Plot the data points within the violin area
if length(density) > 1
[~, unique_idx] = unique(value);
jitterstrength = interp1(value(unique_idx), density(unique_idx)*width, data, 'linear','extrap');
else % all data is identical:
jitterstrength = density*width;
end
if isempty(data2) % if no comparison data
jitter = 2*(rand(size(data))-0.5); % both sides
else
jitter = rand(size(data)); % only right side
end
switch args.HalfViolin % this is more modular
case 'left'
jitter = -1*(rand(size(data))); %left
case 'right'
jitter = 1*(rand(size(data))); %right
case 'full'
jitter = 2*(rand(size(data))-0.5);
end
% Make scatter plot
switch args.DataStyle
case 'scatter'
if ~isempty(data2)
jitter = 1*(rand(size(data))); %right
obj.ScatterPlot = ...
scatter(pos + jitter.*jitterstrength, data, args.MarkerSize, 'filled');
% plot the data points within the violin area
if length(densityC) > 1
jitterstrength = interp1(valueC, densityC*widthC, data2);
else % all data is identical:
jitterstrength = densityC*widthC;
end
jitter = -1*rand(size(data2));% left
obj.ScatterPlot2 = ...
scatter(pos + jitter.*jitterstrength, data2, args.MarkerSize, 'filled');
else
obj.ScatterPlot = ...
scatter(pos + jitter.*jitterstrength, data, args.MarkerSize, 'filled');
end
case 'histogram'
[counts,edges] = histcounts(data, size(unique(data),1));
switch args.HalfViolin
case 'right'
obj.HistogramPlot= plot([pos-((counts')/max(counts))*max(jitterstrength)*2, pos*ones(size(counts,2),1)]',...
[edges(1:end-1)+max(diff(edges))/2; edges(1:end-1)+max(diff(edges))/2],'-','LineWidth',1, 'Color', 'k');
case 'left'
obj.HistogramPlot= plot([pos*ones(size(counts,2),1), pos+((counts')/max(counts))*max(jitterstrength)*2]',...
[edges(1:end-1)+max(diff(edges))/2; edges(1:end-1)+max(diff(edges))/2],'-','LineWidth',1, 'Color', 'k');
otherwise
fprintf([namefun, ' No histogram/bar plot option available for full violins, as it would look overcrowded.\n'])
end
case 'none'
end
%% Plot the violin
halfViol= ones(1, size(density,2));
if isempty(data2) % if no comparison data
switch args.HalfViolin
case 'right'
obj.ViolinPlot = ... % plot color will be overwritten later
fill([pos+density*width halfViol*pos], ...
[value value(end:-1:1)], [1 1 1]);
case 'left'
obj.ViolinPlot = ... % plot color will be overwritten later
fill([halfViol*pos pos-density(end:-1:1)*width], ...
[value value(end:-1:1)], [1 1 1]);
case 'full'
obj.ViolinPlot = ... % plot color will be overwritten later
fill([pos+density*width pos-density(end:-1:1)*width], ...
[value value(end:-1:1)], [1 1 1]);
end
else
% plot right half of the violin
obj.ViolinPlot = ...
fill([pos+density*width pos-density(1)*width], ...
[value value(1)], [1 1 1]);
% plot left half of the violin
obj.ViolinPlot2 = ...
fill([pos-densityC(end)*widthC pos-densityC(end:-1:1)*widthC], ...
[valueC(end) valueC(end:-1:1)], [1 1 1]);
end
%% Plot the quartiles within the violin
quartiles = quantile(data, [0.25, 0.5, 0.75]);
flat= [halfViol*pos halfViol*pos];
switch args.QuartileStyle
case 'shadow'
switch args.HalfViolin
case 'right'
w = [pos+density*width halfViol*pos];
h= [value value(end:-1:1)];
case 'left'
w = [halfViol*pos pos-density(end:-1:1)*width];
h= [value value(end:-1:1)];
case 'full'
w = [pos+density*width pos-density(end:-1:1)*width];
h= [value value(end:-1:1)];
end
indices = h >= quartiles(1) & h <= quartiles(3);
obj.ViolinPlotQ = ... % plot color will be overwritten later
fill(w(indices), ...
h(indices), [1 1 1]);
case 'boxplot'
obj.BoxPlot = ... % plot color will be overwritten later
fill(pos+[-1,1,1,-1]*args.BoxWidth, ...
[quartiles(1) quartiles(1) quartiles(3) quartiles(3)], ...
[1 1 1]);
case 'none'
end
%% Plot the data mean
meanValue = mean(data);
if length(density) > 1
[~, unique_idx] = unique(value);
meanDensityWidth = interp1(value(unique_idx), density(unique_idx), meanValue, 'linear','extrap')*width;
else % all data is identical:
meanDensityWidth = density*width;
end
if meanDensityWidth<args.BoxWidth/2
meanDensityWidth=args.BoxWidth/2;
end
switch args.HalfViolin
case 'right'
obj.MeanPlot = plot(pos+[0,1].*meanDensityWidth, ...
[meanValue, meanValue]);
case 'left'
obj.MeanPlot = plot(pos+[-1,0].*meanDensityWidth, ...
[meanValue, meanValue]);
case 'full'
obj.MeanPlot = plot(pos+[-1,1].*meanDensityWidth, ...
[meanValue, meanValue]);
end
obj.MeanPlot.LineWidth = 1;
%% Plot the median, notch, and whiskers
IQR = quartiles(3) - quartiles(1);
lowhisker = quartiles(1) - 1.5*IQR;
lowhisker = max(lowhisker, min(data(data > lowhisker)));
hiwhisker = quartiles(3) + 1.5*IQR;
hiwhisker = min(hiwhisker, max(data(data < hiwhisker)));
if ~isempty(lowhisker) && ~isempty(hiwhisker)
obj.WhiskerPlot = plot([pos pos], [lowhisker hiwhisker]);
end
% Median
obj.MedianPlot = scatter(pos, quartiles(2), args.MedianMarkerSize, [1 1 1], 'filled');
% Notches
obj.NotchPlots = ...
scatter(pos, quartiles(2)-1.57*IQR/sqrt(length(data)), ...
[], [1 1 1], 'filled', '^');
obj.NotchPlots(2) = ...
scatter(pos, quartiles(2)+1.57*IQR/sqrt(length(data)), ...
[], [1 1 1], 'filled', 'v');
%% Set graphical preferences
obj.EdgeColor = args.EdgeColor;
obj.MedianPlot.LineWidth = args.LineWidth;
obj.BoxColor = args.BoxColor;
obj.BoxWidth = args.BoxWidth;
obj.MedianColor = args.MedianColor;
obj.ShowData = args.ShowData;
obj.ShowNotches = args.ShowNotches;
obj.ShowMean = args.ShowMean;
obj.ShowBox = args.ShowBox;
obj.ShowMedian = args.ShowMedian;
obj.ShowWhiskers = args.ShowWhiskers;
if not(isempty(args.ViolinColor))
if size(args.ViolinColor{1},1) > 1
ViolinColor{1} = args.ViolinColor{1}(pos,:);
else
ViolinColor{1} = args.ViolinColor{1};
end
if length(args.ViolinColor)==2
if size(args.ViolinColor{2},1) > 1
ViolinColor{2} = args.ViolinColor{2}(pos,:);
else
ViolinColor{2} = args.ViolinColor{2};
end
else
ViolinColor{2} = ViolinColor{1};
end
else
% defaults
if args.scpltBool
ViolinColor{1} = obj.ScatterPlot.CData;
else
ViolinColor{1} = [0 0 0];
end
ViolinColor{2} = [0 0 0];
end
obj.ViolinColor = ViolinColor;
if not(isempty(args.ViolinAlpha))
if length(args.ViolinAlpha{1})>1
error('Only scalar values are accepted for the alpha color channel');
else
ViolinAlpha{1} = args.ViolinAlpha{1};
end
if length(args.ViolinAlpha)==2
if length(args.ViolinAlpha{2})>1
error('Only scalar values are accepted for the alpha color channel');
else
ViolinAlpha{2} = args.ViolinAlpha{2};
end
else
ViolinAlpha{2} = ViolinAlpha{1}/2; % default unless specified
end
else
% default
ViolinAlpha = {1,1};
end
obj.ViolinAlpha = ViolinAlpha;
end
%% SET METHODS
function set.EdgeColor(obj, color)
if ~isempty(obj.ViolinPlot)
obj.ViolinPlot.EdgeColor = color;
obj.ViolinPlotQ.EdgeColor = color;
if ~isempty(obj.ViolinPlot2)
obj.ViolinPlot2.EdgeColor = color;
end
end
end
function color = get.EdgeColor(obj)
if ~isempty(obj.ViolinPlot)
color = obj.ViolinPlot.EdgeColor;
end
end
function set.MedianColor(obj, color)
obj.MedianPlot.MarkerFaceColor = color;
if ~isempty(obj.NotchPlots)
obj.NotchPlots(1).MarkerFaceColor = color;
obj.NotchPlots(2).MarkerFaceColor = color;
end
end
function color = get.MedianColor(obj)
color = obj.MedianPlot.MarkerFaceColor;
end
function set.BoxColor(obj, color)
if ~isempty(obj.BoxPlot)
obj.BoxPlot.FaceColor = color;
obj.BoxPlot.EdgeColor = color;
obj.WhiskerPlot.Color = color;
obj.MedianPlot.MarkerEdgeColor = color;
obj.NotchPlots(1).MarkerFaceColor = color;
obj.NotchPlots(2).MarkerFaceColor = color;
elseif ~isempty(obj.ViolinPlotQ)
obj.WhiskerPlot.Color = color;
obj.MedianPlot.MarkerEdgeColor = color;
obj.NotchPlots(1).MarkerFaceColor = color;
obj.NotchPlots(2).MarkerFaceColor = color;
end
end
function color = get.BoxColor(obj)
if ~isempty(obj.BoxPlot)
color = obj.BoxPlot.FaceColor;
end
end
function set.BoxWidth(obj,width)
if ~isempty(obj.BoxPlot)
pos=mean(obj.BoxPlot.XData);
obj.BoxPlot.XData=pos+[-1,1,1,-1]*width;
end
end
function width = get.BoxWidth(obj)
width=max(obj.BoxPlot.XData)-min(obj.BoxPlot.XData);
end
function set.ViolinColor(obj, color)
obj.ViolinPlot.FaceColor = color{1};
obj.ScatterPlot.MarkerFaceColor = color{1};
obj.MeanPlot.Color = color{1};
if ~isempty(obj.ViolinPlot2)
obj.ViolinPlot2.FaceColor = color{2};
obj.ScatterPlot2.MarkerFaceColor = color{2};
end
if ~isempty(obj.ViolinPlotQ)
obj.ViolinPlotQ.FaceColor = color{1};
end
for idx = 1: size(obj.HistogramPlot,1)
obj.HistogramPlot(idx).Color = color{1};
end
end
function color = get.ViolinColor(obj)
color{1} = obj.ViolinPlot.FaceColor;
if ~isempty(obj.ViolinPlot2)
color{2} = obj.ViolinPlot2.FaceColor;
end
end
function set.ViolinAlpha(obj, alpha)
obj.ViolinPlotQ.FaceAlpha = .65;
obj.ViolinPlot.FaceAlpha = alpha{1};
obj.ScatterPlot.MarkerFaceAlpha = 1;
if ~isempty(obj.ViolinPlot2)
obj.ViolinPlot2.FaceAlpha = alpha{2};
obj.ScatterPlot2.MarkerFaceAlpha = 1;
end
end
function alpha = get.ViolinAlpha(obj)
alpha{1} = obj.ViolinPlot.FaceAlpha;
if ~isempty(obj.ViolinPlot2)
alpha{2} = obj.ViolinPlot2.FaceAlpha;
end
end
function set.ShowData(obj, yesno)
if yesno
obj.ScatterPlot.Visible = 'on';
for idx = 1: size(obj.HistogramPlot,1)
obj.HistogramPlot(idx).Visible = 'on';
end
else
obj.ScatterPlot.Visible = 'off';
for idx = 1: size(obj.HistogramPlot,1)
obj.HistogramPlot(idx).Visible = 'off';
end
end
if ~isempty(obj.ScatterPlot2)
obj.ScatterPlot2.Visible = obj.ScatterPlot.Visible;
end
end
function yesno = get.ShowData(obj)
if ~isempty(obj.ScatterPlot)
yesno = strcmp(obj.ScatterPlot.Visible, 'on');
end
end
function set.ShowNotches(obj, yesno)
if ~isempty(obj.NotchPlots)
if yesno
obj.NotchPlots(1).Visible = 'on';
obj.NotchPlots(2).Visible = 'on';
else
obj.NotchPlots(1).Visible = 'off';
obj.NotchPlots(2).Visible = 'off';
end
end
end
function yesno = get.ShowNotches(obj)
if ~isempty(obj.NotchPlots)
yesno = strcmp(obj.NotchPlots(1).Visible, 'on');
end
end
function set.ShowMean(obj, yesno)
if ~isempty(obj.MeanPlot)
if yesno
obj.MeanPlot.Visible = 'on';
else
obj.MeanPlot.Visible = 'off';
end
end
end
function yesno = get.ShowMean(obj)
if ~isempty(obj.BoxPlot)
yesno = strcmp(obj.BoxPlot.Visible, 'on');
end
end
function set.ShowBox(obj, yesno)
if ~isempty(obj.BoxPlot)
if yesno
obj.BoxPlot.Visible = 'on';
else
obj.BoxPlot.Visible = 'off';
end
end
end
function yesno = get.ShowBox(obj)
if ~isempty(obj.BoxPlot)
yesno = strcmp(obj.BoxPlot.Visible, 'on');
end
end
function set.ShowMedian(obj, yesno)
if ~isempty(obj.MedianPlot)
if yesno
obj.MedianPlot.Visible = 'on';
else
obj.MedianPlot.Visible = 'off';
end
end
end
function yesno = get.ShowMedian(obj)
if ~isempty(obj.MedianPlot)
yesno = strcmp(obj.MedianPlot.Visible, 'on');
end
end
function set.ShowWhiskers(obj, yesno)
if ~isempty(obj.WhiskerPlot)
if yesno
obj.WhiskerPlot.Visible = 'on';
else
obj.WhiskerPlot.Visible = 'off';
end
end
end
function yesno = get.ShowWhiskers(obj)
if ~isempty(obj.WhiskerPlot)
yesno = strcmp(obj.WhiskerPlot.Visible, 'on');
end
end
end
methods (Access=private)
function results = checkInputs(~, data, pos, varargin)
isscalarnumber = @(x) (isnumeric(x) & isscalar(x));
p = inputParser();
p.addRequired('Data', @(x)isnumeric(vertcat(x{:})));
p.addRequired('Pos', isscalarnumber);
p.addParameter('Width', 0.3, isscalarnumber);
p.addParameter('Bandwidth', [], isscalarnumber);
iscolor = @(x) (isnumeric(x) & size(x,2) == 3);
p.addParameter('ViolinColor', [], @(x)iscolor(vertcat(x{:})));
p.addParameter('MarkerSize', 24, @isnumeric);
p.addParameter('MedianMarkerSize', 36, @isnumeric);
p.addParameter('LineWidth', 0.75, @isnumeric);
p.addParameter('BoxColor', [0.5 0.5 0.5], iscolor);
p.addParameter('BoxWidth', 0.01, isscalarnumber);
p.addParameter('EdgeColor', [0.5 0.5 0.5], iscolor);
p.addParameter('MedianColor', [1 1 1], iscolor);
p.addParameter('ViolinAlpha', {0.3,0.15}, @(x)isnumeric(vertcat(x{:})));
isscalarlogical = @(x) (islogical(x) & isscalar(x));
p.addParameter('ShowData', true, isscalarlogical);
p.addParameter('ShowNotches', false, isscalarlogical);
p.addParameter('ShowMean', false, isscalarlogical);
p.addParameter('ShowBox', true, isscalarlogical);
p.addParameter('ShowMedian', true, isscalarlogical);
p.addParameter('ShowWhiskers', true, isscalarlogical);
validSides={'full', 'right', 'left'};
checkSide = @(x) any(validatestring(x, validSides));
p.addParameter('HalfViolin', 'full', checkSide);
validQuartileStyles={'boxplot', 'shadow', 'none'};
checkQuartile = @(x)any(validatestring(x, validQuartileStyles));
p.addParameter('QuartileStyle', 'boxplot', checkQuartile);
validDataStyles = {'scatter', 'histogram', 'none'};
checkStyle = @(x)any(validatestring(x, validDataStyles));
p.addParameter('DataStyle', 'scatter', checkStyle);
p.parse(data, pos, varargin{:});
results = p.Results;
end
end
methods (Static)
function [density, value, width] = calcKernelDensity(data, bandwidth, width)
if isempty(data)
error('Empty input data');
end
[density, value] = ksdensity(data, 'bandwidth', bandwidth);
density = density(value >= min(data) & value <= max(data));
value = value(value >= min(data) & value <= max(data));
value(1) = min(data);
value(end) = max(data);
value = [value(1)*(1-1E-5), value, value(end)*(1+1E-5)];
density = [0, density, 0];
% all data is identical
if min(data) == max(data)
density = 1;
value= mean(value);
end
width = width/max(density);
end
end
end