-
Notifications
You must be signed in to change notification settings - Fork 101
/
Copy pathdemo.py
120 lines (99 loc) · 4.97 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import torch, os, cv2
from utils.dist_utils import dist_print
import torch, os
from utils.common import merge_config, get_model
import tqdm
import torchvision.transforms as transforms
from data.dataset import LaneTestDataset
def pred2coords(pred, row_anchor, col_anchor, local_width = 1, original_image_width = 1640, original_image_height = 590):
batch_size, num_grid_row, num_cls_row, num_lane_row = pred['loc_row'].shape
batch_size, num_grid_col, num_cls_col, num_lane_col = pred['loc_col'].shape
max_indices_row = pred['loc_row'].argmax(1).cpu()
# n , num_cls, num_lanes
valid_row = pred['exist_row'].argmax(1).cpu()
# n, num_cls, num_lanes
max_indices_col = pred['loc_col'].argmax(1).cpu()
# n , num_cls, num_lanes
valid_col = pred['exist_col'].argmax(1).cpu()
# n, num_cls, num_lanes
pred['loc_row'] = pred['loc_row'].cpu()
pred['loc_col'] = pred['loc_col'].cpu()
coords = []
row_lane_idx = [1,2]
col_lane_idx = [0,3]
for i in row_lane_idx:
tmp = []
if valid_row[0,:,i].sum() > num_cls_row / 2:
for k in range(valid_row.shape[1]):
if valid_row[0,k,i]:
all_ind = torch.tensor(list(range(max(0,max_indices_row[0,k,i] - local_width), min(num_grid_row-1, max_indices_row[0,k,i] + local_width) + 1)))
out_tmp = (pred['loc_row'][0,all_ind,k,i].softmax(0) * all_ind.float()).sum() + 0.5
out_tmp = out_tmp / (num_grid_row-1) * original_image_width
tmp.append((int(out_tmp), int(row_anchor[k] * original_image_height)))
coords.append(tmp)
for i in col_lane_idx:
tmp = []
if valid_col[0,:,i].sum() > num_cls_col / 4:
for k in range(valid_col.shape[1]):
if valid_col[0,k,i]:
all_ind = torch.tensor(list(range(max(0,max_indices_col[0,k,i] - local_width), min(num_grid_col-1, max_indices_col[0,k,i] + local_width) + 1)))
out_tmp = (pred['loc_col'][0,all_ind,k,i].softmax(0) * all_ind.float()).sum() + 0.5
out_tmp = out_tmp / (num_grid_col-1) * original_image_height
tmp.append((int(col_anchor[k] * original_image_width), int(out_tmp)))
coords.append(tmp)
return coords
if __name__ == "__main__":
torch.backends.cudnn.benchmark = True
args, cfg = merge_config()
cfg.batch_size = 1
print('setting batch_size to 1 for demo generation')
dist_print('start testing...')
assert cfg.backbone in ['18','34','50','101','152','50next','101next','50wide','101wide']
if cfg.dataset == 'CULane':
cls_num_per_lane = 18
elif cfg.dataset == 'Tusimple':
cls_num_per_lane = 56
else:
raise NotImplementedError
net = get_model(cfg)
state_dict = torch.load(cfg.test_model, map_location='cpu')['model']
compatible_state_dict = {}
for k, v in state_dict.items():
if 'module.' in k:
compatible_state_dict[k[7:]] = v
else:
compatible_state_dict[k] = v
net.load_state_dict(compatible_state_dict, strict=False)
net.eval()
img_transforms = transforms.Compose([
transforms.Resize((int(cfg.train_height / cfg.crop_ratio), cfg.train_width)),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
])
if cfg.dataset == 'CULane':
splits = ['test0_normal.txt', 'test1_crowd.txt', 'test2_hlight.txt', 'test3_shadow.txt', 'test4_noline.txt', 'test5_arrow.txt', 'test6_curve.txt', 'test7_cross.txt', 'test8_night.txt']
datasets = [LaneTestDataset(cfg.data_root,os.path.join(cfg.data_root, 'list/test_split/'+split),img_transform = img_transforms, crop_size = cfg.train_height) for split in splits]
img_w, img_h = 1640, 590
elif cfg.dataset == 'Tusimple':
splits = ['test.txt']
datasets = [LaneTestDataset(cfg.data_root,os.path.join(cfg.data_root, split),img_transform = img_transforms, crop_size = cfg.train_height) for split in splits]
img_w, img_h = 1280, 720
else:
raise NotImplementedError
for split, dataset in zip(splits, datasets):
loader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle = False, num_workers=1)
fourcc = cv2.VideoWriter_fourcc(*'MJPG')
print(split[:-3]+'avi')
vout = cv2.VideoWriter(split[:-3]+'avi', fourcc , 30.0, (img_w, img_h))
for i, data in enumerate(tqdm.tqdm(loader)):
imgs, names = data
imgs = imgs.cuda()
with torch.no_grad():
pred = net(imgs)
vis = cv2.imread(os.path.join(cfg.data_root,names[0]))
coords = pred2coords(pred, cfg.row_anchor, cfg.col_anchor, original_image_width = img_w, original_image_height = img_h)
for lane in coords:
for coord in lane:
cv2.circle(vis,coord,5,(0,255,0),-1)
vout.write(vis)
vout.release()