-
Notifications
You must be signed in to change notification settings - Fork 497
/
demo.py
93 lines (80 loc) · 3.76 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import torch, os, cv2
from model.model import parsingNet
from utils.common import merge_config
from utils.dist_utils import dist_print
import torch
import scipy.special, tqdm
import numpy as np
import torchvision.transforms as transforms
from data.dataset import LaneTestDataset
from data.constant import culane_row_anchor, tusimple_row_anchor
if __name__ == "__main__":
torch.backends.cudnn.benchmark = True
args, cfg = merge_config()
dist_print('start testing...')
assert cfg.backbone in ['18','34','50','101','152','50next','101next','50wide','101wide']
if cfg.dataset == 'CULane':
cls_num_per_lane = 18
elif cfg.dataset == 'Tusimple':
cls_num_per_lane = 56
else:
raise NotImplementedError
net = parsingNet(pretrained = False, backbone=cfg.backbone,cls_dim = (cfg.griding_num+1,cls_num_per_lane,4),
use_aux=False).cuda() # we dont need auxiliary segmentation in testing
state_dict = torch.load(cfg.test_model, map_location='cpu')['model']
compatible_state_dict = {}
for k, v in state_dict.items():
if 'module.' in k:
compatible_state_dict[k[7:]] = v
else:
compatible_state_dict[k] = v
net.load_state_dict(compatible_state_dict, strict=False)
net.eval()
img_transforms = transforms.Compose([
transforms.Resize((288, 800)),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
])
if cfg.dataset == 'CULane':
splits = ['test0_normal.txt', 'test1_crowd.txt', 'test2_hlight.txt', 'test3_shadow.txt', 'test4_noline.txt', 'test5_arrow.txt', 'test6_curve.txt', 'test7_cross.txt', 'test8_night.txt']
datasets = [LaneTestDataset(cfg.data_root,os.path.join(cfg.data_root, 'list/test_split/'+split),img_transform = img_transforms) for split in splits]
img_w, img_h = 1640, 590
row_anchor = culane_row_anchor
elif cfg.dataset == 'Tusimple':
splits = ['test.txt']
datasets = [LaneTestDataset(cfg.data_root,os.path.join(cfg.data_root, split),img_transform = img_transforms) for split in splits]
img_w, img_h = 1280, 720
row_anchor = tusimple_row_anchor
else:
raise NotImplementedError
for split, dataset in zip(splits, datasets):
loader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle = False, num_workers=1)
fourcc = cv2.VideoWriter_fourcc(*'MJPG')
print(split[:-3]+'avi')
vout = cv2.VideoWriter(split[:-3]+'avi', fourcc , 30.0, (img_w, img_h))
for i, data in enumerate(tqdm.tqdm(loader)):
imgs, names = data
imgs = imgs.cuda()
with torch.no_grad():
out = net(imgs)
col_sample = np.linspace(0, 800 - 1, cfg.griding_num)
col_sample_w = col_sample[1] - col_sample[0]
out_j = out[0].data.cpu().numpy()
out_j = out_j[:, ::-1, :]
prob = scipy.special.softmax(out_j[:-1, :, :], axis=0)
idx = np.arange(cfg.griding_num) + 1
idx = idx.reshape(-1, 1, 1)
loc = np.sum(prob * idx, axis=0)
out_j = np.argmax(out_j, axis=0)
loc[out_j == cfg.griding_num] = 0
out_j = loc
# import pdb; pdb.set_trace()
vis = cv2.imread(os.path.join(cfg.data_root,names[0]))
for i in range(out_j.shape[1]):
if np.sum(out_j[:, i] != 0) > 2:
for k in range(out_j.shape[0]):
if out_j[k, i] > 0:
ppp = (int(out_j[k, i] * col_sample_w * img_w / 800) - 1, int(img_h * (row_anchor[cls_num_per_lane-1-k]/288)) - 1 )
cv2.circle(vis,ppp,5,(0,255,0),-1)
vout.write(vis)
vout.release()