-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathdm4bem.py
646 lines (547 loc) · 27.6 KB
/
dm4bem.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Sep 22 09:58:49 2021
@author: cghiaus
Import functions for EPW data files.
Adapted from
https://github.com/pvlib/pvlib-python/blob/master/pvlib/iotools/epw.py
"""
import numpy as np
import pandas as pd
import sys
from scipy.linalg import block_diag
def TCAss(TCd, AssX):
"""
Parameters
----------
TCd : dictionary of thermal circuits
DESCRIPTION.
Dictionary of disassembled thermal circuitss. Example:
TCd = {'0': TCd0,
'1': TCd1,
...
'n': TCdn}
Each thermal circuit is a dictionary:
TCdk = {'A': A, 'G': G, 'b': b, 'C': C, 'f': f, 'y': y}
AssX : np.array
DESCRIPTION.
Assembling matrix:
[[TC<-, node, <-TC, node],
...
[TC<-, node, <-TC, node]]
Returns
-------
TCa : Dictionary
DESCRIPTION.
Assembled thermal circuit:
TCdk = {'A': A, 'G': G, 'C': C, 'b': b, 'f': f, 'y': y}
"""
# Create assembing matrix Ass from AssX
TCdf = pd.DataFrame(TCd).transpose()
# Global indexes of the 1st node of each TC
size_f_eachTCd = TCdf.f.apply(lambda x: np.size(x))
TCdf['global 1st node'] = np.cumsum(size_f_eachTCd)
TCdf['global 1st node'] = TCdf['global 1st node'].shift(1).fillna(0)
# Global indexes of the 1st branch of each TC
size_b_eachTCd = TCdf.b.apply(lambda x: np.size(x))
TCdf['global 1st branch'] = np.cumsum(size_b_eachTCd)
TCdf['global 1st branch'] = TCdf['global 1st branch'].shift(1).fillna(0)
# Ass = global_1st_node of TC from AssX + its local node
Ass = np.array([TCdf['global 1st node'][AssX[:, 0]] + AssX[:, 1],
TCdf['global 1st node'][AssX[:, 2]] + AssX[:, 3]])
Ass = Ass.astype(int)
# Disassembling matrix for temperatures Adθ
# - matrix that keeps the indexes of themperature nodes
Adθ = np.eye(sum(size_f_eachTCd))
# - add the columns that merge
Adθ[:, Ass[0]] = Adθ[:, Ass[0]] + Adθ[:, Ass[1]]
# - eliminate the columns that correspond to eliminated nodes
Adθ = np.delete(Adθ, Ass[1], 1)
Adq = np.eye(sum(size_b_eachTCd))
# Ad for [q1 q2 ... θ1 θ2 ...]
Ad = block_diag(Adq, Adθ)
# List of indexes for Adq
row_Adq_local = TCdf.b.apply(lambda x: np.arange(np.size(x)))
row_Adq_global = row_Adq_local + TCdf['global 1st branch']
row_Adq_global = [list(x) for x in row_Adq_global]
# List of indexes for Adθ
row_Adθ_local = TCdf.f.apply(lambda x: np.arange(np.size(x)))
row_Adθ_global = row_Adθ_local + TCdf['global 1st node']
row_Adθ_global += row_Adq_global[-1][-1] + 1
row_Adθ_global = [list(x) for x in row_Adθ_global]
row_Ad = list(zip(row_Adq_global, row_Adθ_global))
row_Ad = [item for sublist in row_Ad for item in sublist]
row_Ad = [item for sublist in row_Ad for item in sublist]
row_Ad = [int(i) for i in row_Ad]
# Ad for [q1 θ1 q2 θ2 ...]
Ad = Ad[row_Ad, :]
TCdf['invG'] = TCdf.G.apply(lambda x: np.linalg.inv(x))
# Block matrices Ki for each TC
T = TCdf[['A', 'invG', 'C', 'b', 'f', 'y']].copy()
T['K'] = ""
Kd = []
ubf = uby = None
for k in range(T.shape[0]):
T['K'][k] = np.block([[T['invG'][k], T['A'][k]],
[-T['A'][k].T, T['C'][k]]])
Kd = block_diag(Kd, T['K'][k])
ubf = np.block([ubf, T['b'][k], T['f'][k]])
uby = np.block([uby, T['b'][k], T['y'][k]])
Kd = np.delete(Kd, obj=0, axis=0)
ubf = np.delete(ubf, obj=0, axis=0)
uby = np.delete(uby, obj=0, axis=0)
Ka = Ad.T @ Kd @ Ad
# Elements of the assembled circuit
# total number of flows
nq = sum(size_b_eachTCd)
Ga = np.linalg.inv(Ka[:nq, :nq])
Aa = Ka[:nq, nq:]
Ca = Ka[nq:, nq:]
u = Ad.T @ ubf
ba = u[:nq]
fa = u[nq:] # elements of f for merged nodes > 1
fa[fa.nonzero()] = 1
u = Ad.T @ uby
ya = u[nq:] # elements of f for merged nodes > 1
ya[ya.nonzero()] = 1
TCa = {'A': Aa, 'G': Ga, 'C': Ca, 'b': ba, 'f': fa, 'y': ya}
TCdf['q local'] = row_Adq_local
TCdf['q global'] = row_Adq_global
TCdf['θ local'] = row_Adθ_local
TCdf['θ glob diss'] = row_Adθ_global
TCdf['θ glob diss'] = TCdf['θ glob diss'].apply(lambda x: np.array(x) - nq)
return TCa
def tc2ss(A, G, C, b, f, y):
"""
Parameters
----------
A : TYPE np.array
adjancecy (TC connection ) matrix:
#rows = #heat flow rates; #cols = #temperature nodes
G : TYPE np.array
square diagonal matrix of conductances
#rows = #heat flow rates (or resistances)
C : TYPE np.array
square diagonal matrix of capacities
b : TYPE np.array
vector indicating the presence of temperature sources on branches:
1 for branches with temperature sources, otherwise 0
f : TYPE np.array
vector indicating the presence of flow sources in nodes:
1 for nodes with heat sources, otherwise 0
y : TYPE np.array
vector indicating the temperatures in the outputs:
1 for output nodes, otherwise 0
Returns
-------
As state matrix in state equation
Bs input matrix in state equation
Cs output matrix in observation equation
Ds input matrix in observation equation
Idx{1} nodes with capacities
{2} branches with temp. sources
{3} nodes with flow sources
{4} nodes output temperatures
"""
rC = np.nonzero(np.diag(C))[0] # rows of non-zero elements in C
r0 = np.nonzero(np.diag(C) == 0)[0] # rows of zero elements in C
# idx_nonzero = {'C': rC,
# 'b': np.nonzero(b)[0],
# 'f': np.nonzero(f)[0],
# 'y': np.nonzero(y)[0]}
if rC.size == 0:
sys.exit('Error in dm4bem.tc2ss: capacity C matrix is zero')
CC = np.diag(C[np.nonzero(C)])
K = -A.T @ G @ A
K11 = K[r0, :][:, r0]
K12 = K[r0, :][:, rC]
K21 = K[rC, :][:, r0]
K22 = K[rC, :][:, rC]
Kb = A.T @ G
Kb1 = Kb[r0, :]
Kb2 = Kb[rC, :]
# State equation
As = np.linalg.inv(CC) @ (
-K21 @ np.linalg.inv(K11) @ K12 + K22)
Bs = np.linalg.inv(CC) @ np.hstack([
-K21 @ np.linalg.inv(K11) @ Kb1 + Kb2,
-K21 @ np.linalg.inv(K11),
np.eye(CC.shape[0])])
# re-arragne B s in order of f-sources
# index B for sources [b f0 fC]
idx_new = np.hstack([np.arange(b.size), b.size + r0, b.size + rC])
Bs[:, idx_new] = np.array(Bs)
# indexes of effective inputs [b f]
inp = np.hstack([np.nonzero(b)[0], A.shape[0] + np.nonzero(f)[0]])
# extract actual inputs (inputs <> 0)
Bs = Bs[:, inp]
# Ds if outputs are all states
Ds = np.zeros([y[rC].size, np.hstack([b, f]).size])
# observation equation for outputs that are not states
Cso = -np.linalg.inv(K11) @ K12
Dso = -np.linalg.inv(K11) @ np.hstack(
[Kb1, np.eye(r0.size), np.zeros([r0.size, CC.shape[0]])])
# observation equation for any output
Cx = np.zeros([y.size, As.shape[0]])
Cs = np.diag(y[rC])
Cx[rC, :] = Cs
Cx[r0, :] = Cso
Cs = Cx[np.nonzero(y)[0], :]
Dx = np.zeros([y.size, np.hstack([b, f]).shape[0]])
Dx[r0, :] = Dso # feed-through if no capacity
Dx[:, idx_new] = np.array(Dx) # rearange in order of f-sources
Ds = Dx[np.nonzero(y)[0], :][:, inp]
return As, Bs, Cs, Ds
# ===========================================================================
def sol_rad_tilt_surf(weather_data, surface_orientation, albedo):
"""
Created on Fri Sep 10 11:04:48 2021
@author: cghiaus
Calculate solar radiation on a tilted surface from weathear data obtained
from `*.epw` file.
Parameters
----------
weather_data : DataFrame
Index : datetime64
Column names :
'temp_air' : dry bulb temperature at the time indicated, °C
'dir_n_rad' : direct normal radiation during last 60 min, Wh/m²
'dif_h_rad' : diffuse horizontal rad. during last 60 min, Wh/m²
surface_orientation : dictionary
'slope' : slope or tilt angle in deg: [0 180];
90°- vertical; > 90°- downward facing
'azimuth' : surface azimuth in deg: [-180 180];
0-south; west-positive
'latitude' : local latitude in deg: [-90 90],
north positive, south negative
albedo : float
diffuse reflection of solar radiation
Returns
-------
solar_rad_tilt : DataFrame
Index : datetime64
Column names :
'direct' : direct radiation on the surface, Wh/m²
'diffuse' : diffuse radiation on the surface, Wh/m²
'reflected' : reflected radiation on the surface, Wh/m²
References
----------
1. [Duffie 2020] J.A. Duffie, W. A. Beckman, N. Blair (2020) Solar
Engineering of Thermal Processes, 5th ed. John Wiley & Sons, Inc.
ISBN 9781119540281
2. [Th-CE 2005] Réglementation Thermique 2005. Méthode de calcul Th-CE.
Annexe à l’arrêté du 19 juillet 2006
"""
B = surface_orientation['slope']
Z = surface_orientation['azimuth']
L = surface_orientation['latitude']
# Transform degrees in radians
B = B * np.pi / 180
Z = Z * np.pi / 180
L = L * np.pi / 180
n = weather_data.index.dayofyear
# [Duffie 2020] eq. 1.6.1a
# [Th-CE] §11.2.1.1, eq. (78)
declination_angle = 23.45 * np.sin(360 * (284 + n) / 365 * np.pi / 180)
d = declination_angle * np.pi / 180
# [Duffie 2020] Example 1.6.1
hour = weather_data.index.hour
minute = weather_data.index.minute + 60
hour_angle = 15 * ((hour + minute / 60) - 12)
h = hour_angle * np.pi / 180
# [Duffie 2020] incidence angle eq. 1.6.2
# [Th-CE 2005] §11.2.1.1
theta = np.sin(d) * np.sin(L) * np.cos(B)
theta -= np.sin(d) * np.cos(L) * np.sin(B) * np.cos(Z)
theta += np.cos(d) * np.cos(L) * np.cos(B) * np.cos(h)
theta += np.cos(d) * np.sin(L) * np.sin(B) * np.cos(Z) * np.cos(h)
theta += np.cos(d) * np.sin(B) * np.sin(Z) * np.sin(h)
theta = np.array(np.arccos(theta))
theta[theta > (np.pi / 2)] = np.pi / 2
# Direct radiation on a wall
# [Th-CE 2005] §11.2.1.1
dir_rad = weather_data["dir_n_rad"] * np.cos(theta)
dir_rad[dir_rad < 0] = 0
# Diffuse radiation on a wall
# [Th-CE 2005] §11.2.1.2, Eq. 79, p. 31
dif_rad = weather_data["dif_h_rad"] * (1 + np.cos(B)) / 2
# Solar radiation reflected by the ground
# [Th-CE 2005] §112.1.3, after eq. (78)
gamma = np.cos(d) * np.cos(L) * np.cos(h)
gamma += np.sin(d) * np.sin(L)
gamma = np.array(np.arcsin(gamma))
gamma[gamma < 1e-5] = 1e-5
# Radiation reflected by the ground
# [Th-CE 2005] §11.2.1.3 eq. (80)
# direct radiation on horizontal surface
dir_h_rad = weather_data["dir_n_rad"] * np.sin(gamma)
# total reflected radiation
ref_rad = (dir_h_rad + weather_data["dif_h_rad"]) * albedo
# reflected radiation eceived by the wall
ref_rad *= (1 - np.cos(B) / 2)
solar_rad_tilt = pd.DataFrame({'direct': dir_rad,
'diffuse': dif_rad,
'reflected': ref_rad})
return solar_rad_tilt
def read_epw(filename, coerce_year=None):
'''
Read an EPW file into a pandas dataframe.
Note that values contained in the metadata dictionary are unchanged
from the EPW file.
EPW files are commonly used by building simulation professionals
and are widely available on the web. For example via:
https://energyplus.net/weather , http://climate.onebuilding.org or
http://www.ladybug.tools/epwmap/
Parameters
----------
filename : String
Can be a relative file path or absolute file path.
coerce_year : None or int, default None
If supplied, the year of the data will be set to this value. This can
be a useful feature because EPW data is composed of data from
different years.
Warning: EPW files always have 365*24 = 8760 data rows;
be careful with the use of leap years.
Returns
-------
data : DataFrame
A pandas dataframe with the columns described in the table
below. For more detailed descriptions of each component, please
consult the EnergyPlus Auxiliary Programs documentation [1]_
metadata : dict
The site metadata available in the file.
See Also
--------
pvlib.iotools.parse_epw
Notes
-----
The returned structures have the following fields.
=============== ====== =========================================
key format description
=============== ====== =========================================
loc String default identifier, not used
city String site loccation
state-prov String state, province or region (if available)
country String site country code
data_type String type of original data source
WMO_code String WMO identifier
latitude Float site latitude
longitude Float site longitude
TZ Float UTC offset
altitude Float site elevation
=============== ====== =========================================
+-------------------------------+-----------------------------------------+
| EPWData field | description |
+===============================+=========================================+
| index | A pandas datetime index. NOTE, times are|
| | set to local standard time (daylight |
| | savings is not included). Days run from |
| | 0-23h to comply with PVLIB's convention.|
+-------------------------------+-----------------------------------------+
| year | Year, from original EPW file. Can be |
| | overwritten using coerce function. |
+-------------------------------+-----------------------------------------+
| month | Month, from original EPW file. |
+-------------------------------+-----------------------------------------+
| day | Day of the month, from original EPW |
| | file. |
+-------------------------------+-----------------------------------------+
| hour | Hour of the day from original EPW file. |
| | Note that EPW's convention of 1-24h is |
| | not taken over in the index dataframe |
| | used in PVLIB. |
+-------------------------------+-----------------------------------------+
| minute | Minute, from original EPW file. Not |
| | used. |
+-------------------------------+-----------------------------------------+
| data_source_unct | Data source and uncertainty flags. See |
| | [1]_, chapter 2.13 |
+-------------------------------+-----------------------------------------+
| temp_air | Dry bulb temperature at the time |
| | indicated, deg C |
+-------------------------------+-----------------------------------------+
| temp_dew | Dew-point temperature at the time |
| | indicated, deg C |
+-------------------------------+-----------------------------------------+
| relative_humidity | Relative humidity at the time indicated,|
| | percent |
+-------------------------------+-----------------------------------------+
| atmospheric_pressure | Station pressure at the time indicated, |
| | Pa |
+-------------------------------+-----------------------------------------+
| etr | Extraterrestrial horizontal radiation |
| | recv'd during 60 minutes prior to |
| | timestamp, Wh/m^2 |
+-------------------------------+-----------------------------------------+
| etrn | Extraterrestrial normal radiation recv'd|
| | during 60 minutes prior to timestamp, |
| | Wh/m^2 |
+-------------------------------+-----------------------------------------+
| ghi_infrared | Horizontal infrared radiation recv'd |
| | during 60 minutes prior to timestamp, |
| | Wh/m^2 |
+-------------------------------+-----------------------------------------+
| ghi | Direct and diffuse horizontal radiation |
| | recv'd during 60 minutes prior to |
| | timestamp, Wh/m^2 |
+-------------------------------+-----------------------------------------+
| dir_n_rad | Amount of direct normal radiation |
| | (modeled) recv'd during 60 minutes prior|
| | to timestamp, Wh/m^2 |
+-------------------------------+-----------------------------------------+
| dif_h_rad | Amount of diffuse horizontal radiation |
| | recv'd during 60 minutes prior to |
| | timestamp, Wh/m^2 |
+-------------------------------+-----------------------------------------+
| global_hor_illum | Avg. total horizontal illuminance recv'd|
| | during the 60 minutes prior to |
| | timestamp, lx |
+-------------------------------+-----------------------------------------+
| direct_normal_illum | Avg. direct normal illuminance recv'd |
| | during the 60 minutes prior to |
| | timestamp, lx |
+-------------------------------+-----------------------------------------+
| diffuse_horizontal_illum | Avg. horizontal diffuse illuminance |
| | recv'd during the 60 minutes prior to |
| | timestamp, lx |
+-------------------------------+-----------------------------------------+
| zenith_luminance | Avg. luminance at the sky's zenith |
| | during the 60 minutes prior to |
| | timestamp, cd/m^2 |
+-------------------------------+-----------------------------------------+
| wind_direction | Wind direction at time indicated, |
| | degrees from north (360 = north; 0 = |
| | undefined,calm) |
+-------------------------------+-----------------------------------------+
| wind_speed | Wind speed at the time indicated, m/s |
+-------------------------------+-----------------------------------------+
| total_sky_cover | Amount of sky dome covered by clouds or |
| | obscuring phenomena at time stamp, |
| | tenths of sky |
+-------------------------------+-----------------------------------------+
| opaque_sky_cover | Amount of sky dome covered by clouds or |
| | obscuring phenomena that prevent |
| | observing the sky at time stamp, tenths |
| | of sky |
+-------------------------------+-----------------------------------------+
| visibility | Horizontal visibility at the time |
| | indicated, km |
+-------------------------------+-----------------------------------------+
| ceiling_height | Height of cloud base above local terrain|
| | (7777=unlimited), meter |
+-------------------------------+-----------------------------------------+
| present_weather_observation | Indicator for remaining fields: If 0, |
| | then the observed weather codes are |
| | taken from the following field. If 9, |
| | then missing weather is assumed. |
+-------------------------------+-----------------------------------------+
| present_weather_codes | Present weather code, see [1], chapter |
| | 2.9.1.28 |
+-------------------------------+-----------------------------------------+
| precipitable_water | Total precipitable water contained in a |
| | column of unit cross section from earth |
| | to top of atmosphere, cm. Note that some|
| | old_TMY3.epw files may have incorrect |
| | unit if it was retrieved from |
| | www.energyplus.net. |
+-------------------------------+-----------------------------------------+
| aerosol_optical_depth | The broadband aerosol optical depth per |
| | unit of air mass due to extinction by |
| | aerosol component of atmosphere, |
| | unitless |
+-------------------------------+-----------------------------------------+
| snow_depth | Snow depth in centimeters on the day |
| | indicated, (999 = missing data) |
+-------------------------------+-----------------------------------------+
| days_since_last_snowfall | Number of days since last snowfall |
| | (maximum value of 88, where 88 = 88 or |
| | greater days; 99 = missing data) |
+-------------------------------+-----------------------------------------+
| albedo | The ratio of reflected solar irradiance |
| | to global horizontal irradiance, |
| | unitless |
+-------------------------------+-----------------------------------------+
| liquid_precipitation_depth | The amount of liquid precipitation |
| | observed at indicated time for the |
| | period indicated in the liquid |
| | precipitation quantity field, |
| | millimeter |
+-------------------------------+-----------------------------------------+
| liquid_precipitation_quantity | The period of accumulation for the |
| | liquid precipitation depth field, hour |
+-------------------------------+-----------------------------------------+
References
----------
.. [1] `EnergyPlus documentation, Auxiliary Programs
<https://energyplus.net/documentation>`_
'''
# Assume it's accessible via the file system
csvdata = open(str(filename), 'r')
try:
data, meta = parse_epw(csvdata, coerce_year)
finally:
csvdata.close()
return data, meta
def parse_epw(csvdata, coerce_year=None):
"""
Given a file-like buffer with data in Energy Plus Weather (EPW) format,
parse the data into a dataframe.
Parameters
----------
csvdata : file-like buffer
a file-like buffer containing data in the EPW format
coerce_year : None or int, default None
If supplied, the year of the data will be set to this value. This can
be a useful feature because EPW data is composed of data from
different years.
Warning: EPW files always have 365*24 = 8760 data rows;
be careful with the use of leap years.
Returns
-------
data : DataFrame
A pandas dataframe with the columns described in the table
below. For more detailed descriptions of each component, please
consult the EnergyPlus Auxiliary Programs documentation
available at: https://energyplus.net/documentation.
metadata : dict
The site metadata available in the file.
See Also
--------
pvlib.iotools.read_epw
"""
# Read line with metadata
firstline = csvdata.readline()
head = ['loc', 'city', 'state-prov', 'country', 'data_type', 'WMO_code',
'latitude', 'longitude', 'TZ', 'altitude']
meta = dict(zip(head, firstline.rstrip('\n').split(",")))
meta['altitude'] = float(meta['altitude'])
meta['latitude'] = float(meta['latitude'])
meta['longitude'] = float(meta['longitude'])
meta['TZ'] = float(meta['TZ'])
colnames = ['year', 'month', 'day', 'hour', 'minute', 'data_source_unct',
'temp_air', 'temp_dew', 'relative_humidity',
'atmospheric_pressure', 'etr', 'etrn', 'ghi_infrared', 'ghi',
'dir_n_rad', 'dif_h_rad', 'global_hor_illum',
'direct_normal_illum', 'diffuse_horizontal_illum',
'zenith_luminance',
'wind_direction', 'wind_speed', 'total_sky_cover',
'opaque_sky_cover', 'visibility', 'ceiling_height',
'present_weather_observation', 'present_weather_codes',
'precipitable_water', 'aerosol_optical_depth', 'snow_depth',
'days_since_last_snowfall', 'albedo',
'liquid_precipitation_depth', 'liquid_precipitation_quantity']
# We only have to skip 6 rows instead of 7 because we have already used
# the realine call above.
data = pd.read_csv(csvdata, skiprows=6, header=0, names=colnames)
# Change to single year if requested
if coerce_year is not None:
data["year"] = coerce_year
# create index that supplies correct date and time zone information
dts = data[['month', 'day']].astype(str).apply(lambda x: x.str.zfill(2))
hrs = (data['hour'] - 1).astype(str).str.zfill(2)
dtscat = data['year'].astype(str) + dts['month'] + dts['day'] + hrs
idx = pd.to_datetime(dtscat, format='%Y%m%d%H')
idx = idx.dt.tz_localize(int(meta['TZ'] * 3600))
data.index = idx
return data, meta