Skip to content

Latest commit

 

History

History
49 lines (34 loc) · 1.26 KB

README.md

File metadata and controls

49 lines (34 loc) · 1.26 KB

Scalable Attributed-Graph Subspace Clustering (SASGC)

This repository provides Python code to reproduce experiments from the AAAI 2023 paper Scalable Attributed-Graph Subspace Clustering.

Run Experiments

Parameter List for run.py

Parameter Type Default Description
dataset string acm Name of the graph dataset (acm, dblp, arxiv, pubmed or wiki).
power integer 2 First power to test.
runs integer 5 Number of runs.

Best Propagation Orders

Dataset Propagation order
acm 2
dblp 2
arxiv 54
computers 67
wiki 4
pubmed 100

Example

To run the model on computers for power p=67 and have the average execution time

python run.py --dataset=computers --power 67

Citation

If you use this code please do cite :

@inproceedings{fettal2023scalable,
  title={Scalable Attributed-Graph Subspace Clustering},
  author={Fettal, Chakib and Labiod, Lazhar and Nadif, Mohamed},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  volume={37},
  year={2023}
}