forked from blei-lab/lda-c
-
Notifications
You must be signed in to change notification settings - Fork 0
/
lda-inference.c
128 lines (107 loc) · 3.78 KB
/
lda-inference.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
// (C) Copyright 2004, David M. Blei (blei [at] cs [dot] cmu [dot] edu)
// This file is part of LDA-C.
// LDA-C is free software; you can redistribute it and/or modify it under
// the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 2 of the License, or (at your
// option) any later version.
// LDA-C is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
#include "lda-inference.h"
/*
* variational inference
*
*/
double lda_inference(document* doc, lda_model* model, double* var_gamma, double** phi)
{
double converged = 1;
double phisum = 0, likelihood = 0;
double likelihood_old = 0, oldphi[model->num_topics];
int k, n, var_iter;
double digamma_gam[model->num_topics];
// compute posterior dirichlet
for (k = 0; k < model->num_topics; k++)
{
var_gamma[k] = model->alpha + (doc->total/((double) model->num_topics));
digamma_gam[k] = digamma(var_gamma[k]);
for (n = 0; n < doc->length; n++)
phi[n][k] = 1.0/model->num_topics;
}
var_iter = 0;
while ((converged > VAR_CONVERGED) &&
((var_iter < VAR_MAX_ITER) || (VAR_MAX_ITER == -1)))
{
var_iter++;
for (n = 0; n < doc->length; n++)
{
phisum = 0;
for (k = 0; k < model->num_topics; k++)
{
oldphi[k] = phi[n][k];
phi[n][k] =
digamma_gam[k] +
model->log_prob_w[k][doc->words[n]];
if (k > 0)
phisum = log_sum(phisum, phi[n][k]);
else
phisum = phi[n][k]; // note, phi is in log space
}
for (k = 0; k < model->num_topics; k++)
{
phi[n][k] = exp(phi[n][k] - phisum);
var_gamma[k] =
var_gamma[k] + doc->counts[n]*(phi[n][k] - oldphi[k]);
// !!! a lot of extra digamma's here because of how we're computing it
// !!! but its more automatically updated too.
digamma_gam[k] = digamma(var_gamma[k]);
}
}
likelihood = compute_likelihood(doc, model, phi, var_gamma);
assert(!isnan(likelihood));
converged = (likelihood_old - likelihood) / likelihood_old;
likelihood_old = likelihood;
// printf("[LDA INF] %8.5f %1.3e\n", likelihood, converged);
}
return(likelihood);
}
/*
* compute likelihood bound
*
*/
double
compute_likelihood(document* doc, lda_model* model, double** phi, double* var_gamma)
{
double likelihood = 0, digsum = 0, var_gamma_sum = 0, dig[model->num_topics];
int k, n;
for (k = 0; k < model->num_topics; k++)
{
dig[k] = digamma(var_gamma[k]);
var_gamma_sum += var_gamma[k];
}
digsum = digamma(var_gamma_sum);
likelihood =
lgamma(model->alpha * model -> num_topics)
- model -> num_topics * lgamma(model->alpha)
- (lgamma(var_gamma_sum));
for (k = 0; k < model->num_topics; k++)
{
likelihood +=
(model->alpha - 1)*(dig[k] - digsum) + lgamma(var_gamma[k])
- (var_gamma[k] - 1)*(dig[k] - digsum);
for (n = 0; n < doc->length; n++)
{
if (phi[n][k] > 0)
{
likelihood += doc->counts[n]*
(phi[n][k]*((dig[k] - digsum) - log(phi[n][k])
+ model->log_prob_w[k][doc->words[n]]));
}
}
}
return(likelihood);
}