forked from microsoft/MoGe
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
130 lines (107 loc) · 4.09 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import os
import time
from pathlib import Path
import uuid
import tempfile
from typing import Union
import atexit
from concurrent.futures import ThreadPoolExecutor
import gradio as gr
import cv2
import torch
import numpy as np
import click
import trimesh
import trimesh.visual
from PIL import Image
from moge.model import MoGeModel
from moge.utils.vis import colorize_depth
import utils3d
model = MoGeModel.from_pretrained('Ruicheng/moge-vitl').cuda().eval()
thread_pool_executor = ThreadPoolExecutor(max_workers=1)
def delete_later(path: Union[str, os.PathLike], delay: int = 300):
def _delete():
try:
os.remove(path)
except:
pass
def _wait_and_delete():
time.sleep(delay)
_delete(path)
thread_pool_executor.submit(_wait_and_delete)
atexit.register(_delete)
def run(image: np.ndarray, remove_edge: bool = True, max_size: int = 800):
run_id = str(uuid.uuid4())
larger_size = max(image.shape[:2])
if larger_size > max_size:
scale = max_size / larger_size
image = cv2.resize(image, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_AREA)
height, width = image.shape[:2]
image_tensor = torch.tensor(image, dtype=torch.float32, device=torch.device('cuda')).permute(2, 0, 1) / 255
output = model.infer(image_tensor, resolution_level=9, apply_mask=True)
points, depth, mask = output['points'].cpu().numpy(), output['depth'].cpu().numpy(), output['mask'].cpu().numpy()
faces, vertices, vertex_colors, vertex_uvs = utils3d.numpy.image_mesh(
points,
image.astype(np.float32) / 255,
utils3d.numpy.image_uv(width=width, height=height),
mask=mask & ~utils3d.numpy.depth_edge(depth, mask=mask, rtol=0.02) if remove_edge else mask,
tri=True
)
vertices, vertex_uvs = vertices * [1, -1, -1], vertex_uvs * [1, -1] + [0, 1]
tempdir = Path(tempfile.gettempdir(), 'moge')
tempdir.mkdir(exist_ok=True)
output_glb_path = Path(tempdir, f'{run_id}.glb')
output_glb_path.parent.mkdir(exist_ok=True)
trimesh.Trimesh(
vertices=vertices * [-1, 1, -1], # No idea why Gradio 3D Viewer' default camera is flipped
faces=faces,
visual = trimesh.visual.texture.TextureVisuals(
uv=vertex_uvs,
material=trimesh.visual.material.PBRMaterial(
baseColorTexture=Image.fromarray(image),
metallicFactor=0.5,
roughnessFactor=1.0
)
),
process=False
).export(output_glb_path)
output_ply_path = Path(tempdir, f'{run_id}.ply')
output_ply_path.parent.mkdir(exist_ok=True)
trimesh.Trimesh(
vertices=vertices,
faces=faces,
vertex_colors=vertex_colors,
process=False
).export(output_ply_path)
colorized_depth = colorize_depth(depth)
delete_later(output_glb_path, delay=300)
delete_later(output_ply_path, delay=300)
return colorized_depth, output_glb_path, output_ply_path.as_posix()
DESCRIPTION = """
## Turn a 2D image into a 3D point map with [MoGe](https://wangrc.site/MoGePage/)
NOTE:
* The maximum size is set to 800px for efficiency purpose. Oversized images will be downsampled.
* The color in the 3D viewer may look dark due to rendering of 3D viewer. You may download the 3D model as .glb or .ply file to view it in other 3D viewers.
"""
@click.command()
@click.option('--share', is_flag=True, help='Whether to run the app in shared mode.')
def main(share: bool):
gr.Interface(
fn=run,
inputs=[
gr.Image(type="numpy", image_mode="RGB"),
gr.Checkbox(True, label="Remove edges"),
],
outputs=[
gr.Image(type="numpy", label="Depth map (colorized)"),
gr.Model3D(display_mode="solid", clear_color=[1.0, 1.0, 1.0, 1.0], label="3D Viewer"),
gr.File(type="filepath", label="Download the model as .ply file"),
],
title=None,
description=DESCRIPTION,
clear_btn=None,
allow_flagging="never",
theme=gr.themes.Soft()
).launch(share=share)
if __name__ == '__main__':
main()