-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel_download.py
37 lines (32 loc) · 2.6 KB
/
model_download.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import torch
from transformers import AutoTokenizer, GPT2Tokenizer
from transformers import GPTNeoForCausalLM, GPTJForCausalLM, AutoModelWithLMHead
# This file used to download the models from huggingface and save them in the cached_models folder
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
for model_name in ["gpt2","distilgpt2","EleutherAI/gpt-neo-125M","EleutherAI/gpt-neo-1.3B","EleutherAI/gpt-neo-2.7B","EleutherAI/gpt-j-6B","meta-llama/Llama-2-7b-chat-hf"]:
print(model_name)
if model_name in ["gpt2", "gpt2-medium", "gpt2-large", "distilgpt2", "gpt2-xl"]:
model = AutoModelWithLMHead.from_pretrained(model_name).to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left") # Initialize tokenizer
# number of heads per layer, and number of layers
num_heads, num_layers = model.config.n_head, model.config.n_layer
head_dim, max_length = int(model.config.n_embd/num_heads), model.config.n_positions
elif model_name in ["EleutherAI/gpt-neo-125M", "EleutherAI/gpt-neo-1.3B", "EleutherAI/gpt-neo-2.7B"]:
model = GPTNeoForCausalLM.from_pretrained(model_name).to(device)
tokenizer = GPT2Tokenizer.from_pretrained(model_name, padding_side="left")
num_heads, num_layers = model.config.num_heads, model.config.num_layers
head_dim, max_length = int(model.config.hidden_size/num_heads), model.config.max_position_embeddings
elif model_name in ["EleutherAI/gpt-j-6B"]:
model = GPTJForCausalLM.from_pretrained(model_name,revision="float16", torch_dtype=torch.float16,).to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name,padding_side="left")
num_heads, num_layers = model.config.n_head, model.config.n_layer
head_dim, max_length = int(model.config.n_embd/num_heads), model.config.n_positions
elif model_name in ["meta-llama/Llama-2-7b-chat-hf"]:
print("./saved_models/cached_models/" + model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
model = LlamaForCausalLM.from_pretrained(model_name, token= 'ENTER_YOUR_TOKEN_HERE').to(device)
num_heads, num_layers = model.config.num_attention_heads, model.config.num_hidden_layers
head_dim, max_length = int(model.config.hidden_size/num_heads), model.config.max_position_embeddings
model.save_pretrained("./saved_models/cached_models/" + model_name)
tokenizer.save_pretrained("./saved_models/cached_tokenizers/" + model_name)
print("./saved_models/cached_models/" + model_name)