forked from karanchahal/DoodleMaster
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
41 lines (31 loc) · 1.23 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import torch.nn as nn
cfg = {
'yolo_full': [32,'M', 64, 'M', 128,64,128,'M', 256,128, 256,'M',512,256,512,256,512,'M',1024,512,1024,512,1024],
'tiny_yolo': [16,'M',32,'M',64,'M',128,'M',256,'M',512,'M',1024,1024],
'small_classifier':[32,64,64,'M']
}
filter_size = {
'yolo_full': [3,'M',3,'M',3,1,3,'M',3,1,3,'M',3,1,3,1,3,'M',3,1,3,1,3],
'tiny_yolo': [3,'M',3,'M',3,'M',3,'M',3,'M',3,'M',3,3],
'small_classifier':[3,3,3,'M']
}
def make_layers(cfg,filter_size, batch_norm=True,in_channels=3):
layers = []
i = 0
for v in cfg:
if v == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
pad = 0
if(filter_size[i] == 3):
pad = 1
conv2d = nn.Conv2d(in_channels, v, kernel_size=filter_size[i], padding=pad)
if batch_norm:
layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
else:
layers += [conv2d, nn.ReLU(inplace=True)]
in_channels = v
i += 1
return nn.Sequential(*layers)
def net(network,in_channels=3):
return make_layers(cfg[network],filter_size[network],batch_norm=True,in_channels=in_channels)