-
Notifications
You must be signed in to change notification settings - Fork 25
/
test.py
45 lines (37 loc) · 1.35 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import time
import os
from options.test_options import TestOptions
opt = TestOptions().parse() # set CUDA_VISIBLE_DEVICES before import torch
from data.data_loader import CreateDataLoader
from models.models import create_model
from util.visualizer import Visualizer
from pdb import set_trace as st
from util import html
import numpy as np
from sklearn.metrics import mean_squared_error
from math import sqrt
opt.nThreads = 1 # test code only supports nThreads=1
opt.batchSize = 1 #test code only supports batchSize=1
opt.serial_batches = True # no shuffle
#load data
data_loader = CreateDataLoader(opt)
dataset_paired, paired_dataset_size = data_loader.load_data_test()
model = create_model(opt)
visualizer = Visualizer(opt)
# create website
web_dir = os.path.join(opt.results_dir, opt.name, '%s_%s' % (opt.phase, opt.which_epoch))
webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.which_epoch))
# test
rmse_x = []
rmse_y = []
for i, (images_a, images_b) in enumerate(dataset_paired):
model.set_input(images_a, images_b)
model.test()
visuals = model.get_current_visuals()
img_path = 'image'+ str(i)
print('process image... %s' % img_path)
visualizer.save_images(webpage, visuals, img_path)
print(np.mean(rmse_y))
print(np.mean(rmse_x))
print((np.mean(rmse_x)+np.mean(rmse_y))/2)
webpage.save()