-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathPublic_Classifier.py
79 lines (62 loc) · 3.09 KB
/
Public_Classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# based on vgg16
import torch
import torch.nn as nn
class Public_Classifier(nn.Module):
def __init__(self, output=1):
super(Public_Classifier, self).__init__()
self.features3 = nn.Sequential(
nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True),
nn.ReLU(inplace=True)
)
self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False, return_indices=True)
self.features4 = nn.Sequential(
nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True),
nn.ReLU(inplace=True)
)
self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False, return_indices=True)
self.features5 = nn.Sequential(
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True),
nn.ReLU(inplace=True)
)
self.pool5 = nn.MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False, return_indices=True)
self.classifier = nn.Sequential(
nn.Linear(15360, 4096, bias=True),
nn.ReLU(inplace=True),
nn.Dropout(p=0.5),
nn.Linear(4096, 4096, bias=True),
nn.ReLU(inplace=True),
nn.Dropout(p=0.5),
nn.Linear(4096, output, bias=True),
nn.Sigmoid()
)
def forward(self, x):
p3 = self.features3(x)
x, p3_idx = self.pool3(p3)
p4 = self.features4(x)
x, p4_idx = self.pool4(p4)
p5 = self.features5(x)
x, p5_idx = self.pool5(p5)
x = x.view(x.size(0), -1)
out = self.classifier(x)
return out