forked from makepath/xarray-spatial
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathterrain.py
121 lines (88 loc) · 3.7 KB
/
terrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import numpy as np
import pandas as pd
from xarray import DataArray
from .perlin import _perlin
# TODO: add optional name parameter `name='terrain'`
def generate_terrain(x_range=(0, 500), y_range=(0, 500),
width=25, height=30, canvas=None,
seed=10, zfactor=4000, full_extent=None):
"""
Generates a pseudo-random terrain which can be helpful
for testing raster functions
Parameters
----------
canvas : ds.Canvas instance for passing output dimensions / ranges
seed : seed for random number generator
zfactor : used as multipler for z values
full_extent : optional string, bbox<xmin, ymin, xmax, ymax>
full extent of coordinate system.
Returns
-------
terrain: DataArray
Notes:
------
Algorithm References:
- This was inspired by Michael McHugh's 2016 PyCon Canada talk:
https://www.youtube.com/watch?v=O33YV4ooHSo
- https://www.redblobgames.com/maps/terrain-from-noise/
"""
def _gen_heights(bumps):
out = np.zeros(len(bumps))
for i, b in enumerate(bumps):
x = b[0]
y = b[1]
val = agg.data[y, x]
if val >= 0.33 and val <= 3:
out[i] = 0.1
return out
def _scale(value, old_range, new_range):
d = (value - old_range[0]) / (old_range[1] - old_range[0])
return d * (new_range[1] - new_range[0]) + new_range[0]
mercator_extent = (-np.pi * 6378137, -np.pi * 6378137, np.pi * 6378137, np.pi * 6378137)
crs_extents = {'3857': mercator_extent}
if isinstance(full_extent, str):
full_extent = crs_extents[full_extent]
elif full_extent is None:
full_extent = (canvas.x_range[0], canvas.y_range[0],
canvas.x_range[1], canvas.y_range[1])
elif not isinstance(full_extent, (list, tuple)) and len(full_extent) != 4:
raise TypeError('full_extent must be tuple(4) or str wkid')
full_xrange = (full_extent[0], full_extent[2])
full_yrange = (full_extent[1], full_extent[3])
x_range_scaled = (_scale(canvas.x_range[0], full_xrange, (0.0, 1.0)),
_scale(canvas.x_range[1], full_xrange, (0.0, 1.0)))
y_range_scaled = (_scale(canvas.y_range[0], full_yrange, (0.0, 1.0)),
_scale(canvas.y_range[1], full_yrange, (0.0, 1.0)))
data = _gen_terrain(canvas.plot_width, canvas.plot_height, seed,
x_range=x_range_scaled, y_range=y_range_scaled)
data = (data - np.min(data))/np.ptp(data)
data[data < 0.3] = 0 # create water
data *= zfactor
# DataArray coords were coming back different from cvs.points...
hack_agg = canvas.points(pd.DataFrame({'x': [], 'y': []}), 'x', 'y')
agg = DataArray(data,
name='terrain',
coords=hack_agg.coords,
dims=hack_agg.dims,
attrs={'res': 1})
return agg
def _gen_terrain(width, height, seed, x_range=None, y_range=None):
if not x_range:
x_range = (0, 1)
if not y_range:
y_range = (0, 1)
# multiplier, (xfreq, yfreq)
NOISE_LAYERS = ((1 / 2**i, (2**i, 2**i)) for i in range(16))
linx = np.linspace(x_range[0], x_range[1], width, endpoint=False)
liny = np.linspace(y_range[0], y_range[1], height, endpoint=False)
x, y = np.meshgrid(linx, liny)
height_map = None
for i, (m, (xfreq, yfreq)) in enumerate(NOISE_LAYERS):
noise = _perlin(x * xfreq, y * yfreq, seed=seed + i) * m
if height_map is None:
height_map = noise
else:
height_map += noise
height_map /= (1.00 + 0.50 + 0.25 + 0.13 + 0.06 + 0.03)
height_map = height_map ** 3
return height_map