-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathhelpers.py
97 lines (86 loc) · 3.99 KB
/
helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import numpy as np
import os
import rasterio
from rasterio.warp import calculate_default_transform, reproject, Resampling,transform_bounds,transform_geom
from rasterio.transform import Affine
import restee as ree
def tile256(raster_path,output_dir):
"""
Create raster tiles of 256 by 256
Arguments:
raster_path: input raster path
output_dir: output folder path
Returns:
256 by 256 raster tiles
"""
#Make outdir if is not created
os.makedirs(output_dir, exist_ok=True)
with rasterio.open(raster_path) as src:
width = src.width
height = src.height
res = src.transform[0]
UL_c,UL_r = src.transform * (0, 0)
band = src.read(1)
kwargs = src.meta.copy()
for col in range(int(np.round_(width/256))):
for row in range(int(np.round_(height/256))):
tf_tile = Affine(res, 0.0,UL_c+(256*res*col),0.0,-1*(res),UL_r+(256*(-1*(res))*row))
id = int(raster_path.split(os.sep)[-2].split('_')[-1])
tile_name = f'{id:03d}_{row:01d}{col:01d}.tif'
np_arr = np.zeros((256, 256), dtype='float32')
tile_band = band[256*row:256*row+256,256*col:256*col+256]
np_arr[:tile_band.shape[0], :tile_band.shape[1]] = tile_band
kwargs.update({
'transform': tf_tile,
'width': 256,
'height': 256,
'compress': 'lzw',
'dtype':'float32',})
with rasterio.open(os.path.join(output_dir,tile_name), "w", **kwargs) as dst:
dst.write(np_arr,1)
np_arr = None
tile_band = None
band = None
def restgee_data(input_tile,ee_img,ee_img_band,output_dir,restee_session):
"""
Download GEE objectecs correspond to raster tile extent using EE REST API(restee package)
Arguments:
input_tile: Input calibrated raster tile
ee_img: GEE object
ee_img_band: GEE object band name
output_dir: output directory path
restee_session : rest ee session
Returns:
GEE objectecs as tiles correspoding to calibrated raster tiles
"""
with rasterio.open(input_tile) as src:
kwargs = src.meta.copy()
tile_tranform = src.transform
tile_bounds = src.bounds
tile_crs = src.crs
gee_domain = ree.Domain((tile_bounds[0],
tile_bounds[1],
tile_bounds[2],
tile_bounds[3]),
resolution= src.transform[0],
crs =str(tile_crs))
band_utm = np.int32(ree.img_to_ndarray(restee_session, gee_domain, image=ee_img, bands=ee_img_band))
gdal_mask = src.dataset_mask()
gdal_mask = np.int32(np.where(gdal_mask == 0, gdal_mask, 1))
band_utm = band_utm*gdal_mask
dst_tranform = rasterio.transform.from_bounds(tile_bounds.left,
tile_bounds.bottom,
tile_bounds.right,
tile_bounds.top,
band_utm.shape[1],
band_utm.shape[0])
out_file_path = os.path.join(output_dir,os.path.basename(input_tile))
with rasterio.open(out_file_path, "w", **kwargs) as dst:
reproject(
source=band_utm,
destination=rasterio.band(dst,1),
src_transform=dst_tranform,
src_crs=tile_crs,
dst_transform=tile_tranform,
dst_crs=tile_crs,
resampling=Resampling.nearest)