forked from llvm/llvm-project
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPipelineGlobalOps.cpp
228 lines (191 loc) · 7.46 KB
/
PipelineGlobalOps.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
//===- PipelineGlobalOpsPass.cpp - Pipeline Global Ops Pass ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/MLProgram/Transforms/Passes.h"
#include "mlir/Dialect/MLProgram/IR/MLProgram.h"
#include "mlir/Dialect/MLProgram/Transforms/Passes.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
namespace mlir {
namespace ml_program {
#define GEN_PASS_DEF_MLPROGRAMPIPELINEGLOBALSPASS
#include "mlir/Dialect/MLProgram/Transforms/Passes.h.inc"
namespace {
class MLProgramPipelineGlobals
: public impl::MLProgramPipelineGlobalsPassBase<MLProgramPipelineGlobals> {
public:
void runOnOperation() override;
private:
LogicalResult buildGlobalMap(ModuleOp op);
void processBlock(Block &block, llvm::DenseSet<SymbolRefAttr> &symbolLoad,
llvm::DenseSet<SymbolRefAttr> &symbolStore);
llvm::DenseMap<SymbolRefAttr, llvm::DenseSet<SymbolRefAttr>> loadSymbolsMap;
llvm::DenseMap<SymbolRefAttr, llvm::DenseSet<SymbolRefAttr>> storeSymbolsMap;
};
// Traverses upwards searchign for the operation mapped by the symbol.
static Operation *getFromSymbol(Operation *baseOp, SymbolRefAttr symbol) {
for (auto *op = baseOp; op; op = op->getParentOp()) {
auto *lookup = SymbolTable::lookupNearestSymbolFrom(op, symbol);
if (lookup)
return lookup;
}
return nullptr;
}
// Builds map from a symbol to MLProgram global symbols loaded or stored
// during processing.
LogicalResult MLProgramPipelineGlobals::buildGlobalMap(ModuleOp module) {
llvm::DenseMap<SymbolRefAttr, Operation *> callableMap;
auto res = module->walk([&](Operation *op) {
if (auto caller = mlir::dyn_cast<CallOpInterface>(op)) {
auto callable = caller.getCallableForCallee();
// For now we do not know how to handle Value based tracing, so fail.
if (mlir::isa<Value>(callable)) {
return WalkResult::interrupt();
}
auto symbol = mlir::dyn_cast<SymbolRefAttr>(callable);
auto *func = getFromSymbol(op, symbol);
callableMap[symbol] = func;
}
return WalkResult::advance();
});
if (res.wasInterrupted()) {
return failure();
}
// First grab all symbols loaded or stored by each function. This
// will not handle calls initially.
llvm::DenseMap<SymbolRefAttr, llvm::DenseSet<SymbolRefAttr>> opLoadSymbols;
llvm::DenseMap<SymbolRefAttr, llvm::DenseSet<SymbolRefAttr>> opStoreSymbols;
for (auto callable : callableMap) {
llvm::DenseSet<SymbolRefAttr> loadSymbols;
llvm::DenseSet<SymbolRefAttr> storeSymbols;
callable.getSecond()->walk(
[&](GlobalLoadOp op) { loadSymbols.insert(op.getGlobal()); });
callable.getSecond()->walk(
[&](GlobalStoreOp op) { storeSymbols.insert(op.getGlobal()); });
opLoadSymbols[callable.getFirst()] = std::move(loadSymbols);
opStoreSymbols[callable.getFirst()] = std::move(storeSymbols);
}
// For each callable function we find each global loaded/stored within the
// function or a nested called function. This includes recursion checking to
// avoid infinitely recursing.
for (auto callable : callableMap) {
SymbolRefAttr thisSymbol = llvm::dyn_cast<SymbolRefAttr>(callable.first);
llvm::SmallVector<SymbolRefAttr> work = {thisSymbol};
llvm::DenseSet<SymbolRefAttr> visited = {thisSymbol};
llvm::DenseSet<SymbolRefAttr> loadSymbols;
llvm::DenseSet<SymbolRefAttr> storeSymbols;
for (size_t i = 0; i < work.size(); ++i) {
callableMap[work[i]]->walk([&](CallOpInterface call) {
auto symbol = dyn_cast<SymbolRefAttr>(call.getCallableForCallee());
if (visited.insert(symbol).second)
work.push_back(symbol);
});
for (auto load : opLoadSymbols[work[i]])
loadSymbols.insert(load);
for (auto store : opStoreSymbols[work[i]])
storeSymbols.insert(store);
}
loadSymbolsMap[thisSymbol] = std::move(loadSymbols);
storeSymbolsMap[thisSymbol] = std::move(storeSymbols);
}
return success();
}
// Process each operation in the block deleting unneeded loads / stores,
// recursing on subblocks and checking function calls.
void MLProgramPipelineGlobals::processBlock(
Block &block, llvm::DenseSet<SymbolRefAttr> &symbolLoad,
llvm::DenseSet<SymbolRefAttr> &symbolStore) {
llvm::DenseMap<SymbolRefAttr, Value> previousLoads;
llvm::DenseMap<SymbolRefAttr, Operation *> previousStores;
llvm::SmallVector<Operation *> toDelete;
for (auto &op : block) {
// If this is a global load, remap to a previous value if known
// and delete this load. Remember that this value is the currently
// known load.
if (auto load = mlir::dyn_cast<GlobalLoadOp>(op)) {
auto ref = load.getGlobal();
symbolLoad.insert(ref);
if (previousLoads.contains(ref)) {
toDelete.push_back(&op);
load.getResult().replaceAllUsesWith(previousLoads[ref]);
} else {
previousLoads[ref] = load.getResult();
}
continue;
}
// Delete a previous store if it exists and is not needed, update
// the most recent known value for this global ref.
if (auto store = mlir::dyn_cast<GlobalStoreOp>(op)) {
auto ref = store.getGlobal();
symbolStore.insert(ref);
auto it = previousStores.find(ref);
if (it != previousStores.end()) {
toDelete.push_back(it->getSecond());
}
previousLoads[ref] = store.getValue();
previousStores[ref] = &op;
continue;
}
// If a function is called, clear known values for loads/stores used by
// the function or its sub-functions.
if (auto call = mlir::dyn_cast<CallOpInterface>(op)) {
auto loadSymbols =
loadSymbolsMap[dyn_cast<SymbolRefAttr>(call.getCallableForCallee())];
auto storeSymbols =
storeSymbolsMap[dyn_cast<SymbolRefAttr>(call.getCallableForCallee())];
for (auto sym : loadSymbols) {
previousStores.erase(sym);
}
for (auto sym : storeSymbols) {
previousLoads.erase(sym);
previousStores.erase(sym);
}
continue;
}
// If the op has sub-regions, recurse inside. We make no guarantees whether
// the recursion occurs.
llvm::DenseSet<SymbolRefAttr> opSymbolLoad;
llvm::DenseSet<SymbolRefAttr> opSymbolStore;
for (auto ®ion : op.getRegions()) {
for (auto &block : region) {
processBlock(block, opSymbolLoad, opSymbolStore);
}
}
// Update current state from the subblock.
for (auto change : opSymbolLoad) {
symbolLoad.insert(change);
previousStores.erase(change);
}
for (auto change : opSymbolStore) {
symbolStore.insert(change);
previousLoads.erase(change);
previousStores.erase(change);
}
}
for (auto *op : toDelete) {
op->erase();
}
}
void MLProgramPipelineGlobals::runOnOperation() {
auto targetOp = getOperation();
if (failed(buildGlobalMap(targetOp))) {
return;
}
for (auto &funcOp : *targetOp.getBody()) {
for (auto ®ion : funcOp.getRegions()) {
for (auto &block : region.getBlocks()) {
llvm::DenseSet<SymbolRefAttr> symbolsLoaded;
llvm::DenseSet<SymbolRefAttr> symbolsStored;
processBlock(block, symbolsLoaded, symbolsStored);
}
}
}
}
} // namespace
} // namespace ml_program
} // namespace mlir