forked from llvm/llvm-project
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathOutlineShapeComputation.cpp
327 lines (284 loc) · 11.5 KB
/
OutlineShapeComputation.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
//====----- OutlineShapeComputation.cpp -----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Shape/Analysis/ShapeMappingAnalysis.h"
#include "mlir/Dialect/Shape/IR/Shape.h"
#include "mlir/Dialect/Shape/Transforms/Passes.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/IR/Matchers.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/Support/Debug.h"
#include <queue>
#include <unordered_set>
#include <vector>
namespace mlir {
#define GEN_PASS_DEF_OUTLINESHAPECOMPUTATIONPASS
#include "mlir/Dialect/Shape/Transforms/Passes.h.inc"
} // namespace mlir
#define DEBUG_TYPE "outline-shape-computation"
using namespace mlir;
namespace {
// A Value is an input of the cluster if it is an operand of an operation in the
// cluster and its defining operation is not in the cluster.
SmallVector<Value, 4>
getInputsOfCluster(const llvm::SmallVector<Operation *, 8> &cluster) {
SmallVector<Value, 4> inputs;
llvm::SmallDenseSet<Value> inputSet;
llvm::SmallDenseSet<Operation *> opSet;
for (Operation *op : cluster) {
bool inserted = opSet.insert(op).second;
(void)inserted;
assert(inserted && "cluster contains duplicate operations");
}
for (Operation *op : cluster) {
for (Value operand : op->getOperands()) {
Operation *operandOp = operand.getDefiningOp();
if (opSet.contains(operandOp)) {
// Skip if defining op is in the cluster.
continue;
}
if (inputSet.insert(operand).second)
inputs.push_back(operand);
}
}
return inputs;
}
// Create a shape.func representing the shape computation for `shape`.
std::pair<shape::FuncOp, SmallVector<Value>>
createFuncFromCluster(OpBuilder &b, const SmallVector<Operation *, 8> &cluster,
Value shape, StringRef fnName, Location loc) {
SmallVector<Value, 4> inputs = getInputsOfCluster(cluster);
auto fnType =
cluster.empty()
? b.getFunctionType(shape.getType(), shape.getType())
: b.getFunctionType(ValueRange(inputs).getTypes(), shape.getType());
shape::FuncOp fnOp = b.create<shape::FuncOp>(loc, fnName, fnType);
Block *block = fnOp.addEntryBlock();
b.setInsertionPointToEnd(block);
IRMapping bvm;
if (cluster.empty()) {
bvm.map(shape, fnOp.getArgument(0));
} else {
for (auto inputAndArg : llvm::zip(inputs, fnOp.getArguments()))
bvm.map(std::get<0>(inputAndArg), std::get<1>(inputAndArg));
}
for (Operation *op : cluster)
b.clone(*op, bvm);
llvm::SmallVector<Value, 4> fnReturns;
fnReturns.push_back(bvm.lookupOrDefault(shape));
b.create<shape::ReturnOp>(loc, fnReturns);
fnOp.setPrivate();
return std::make_pair(fnOp, inputs);
}
// The operations in the cluster might be unsorted, which could be inconvenient
// when creating shape.func op.
DenseMap<Value, SmallVector<Operation *, 8>>
getOrderedClusters(const DenseMap<Value, DenseSet<Operation *>> &clusters,
func::FuncOp funcOp) {
// Compute all clusters that each operation is in
DenseMap<Operation *, SmallVector<Value>> op2Shapes;
for (const auto &it : clusters) {
Value shape = it.first;
const DenseSet<Operation *> &cluster = it.second;
for (Operation *cOp : cluster)
op2Shapes[cOp].push_back(shape);
}
// Iterate through all operations in order. Get all the clusters `cOp` belongs
// to and construct the new ordered cluster as it traverses.
DenseMap<Value, SmallVector<Operation *, 8>> orderedClusters;
funcOp.walk([&](Operation *op) {
auto it = op2Shapes.find(op);
if (it != op2Shapes.end()) {
Operation *cOp = it->first;
for (Value shape : it->second)
orderedClusters[shape].push_back(cOp);
}
});
return orderedClusters;
}
void constructShapeFunc(
const std::vector<shape::WithOp> &allWithOps, MLIRContext *context,
DenseMap<Value, SmallVector<Operation *, 8>> &clusters,
SymbolTable &symbolTable,
DenseMap<Value, shape::ShapeMappingValue> &dynShape2ShapeFunc,
func::FuncOp funcOp, shape::ShapeMappingAnalysis &shapeMappingAnalysis) {
std::string shapeCalculationNamePrefix = "shape_cal_";
int shapeCalculationNameIdx = 0;
OpBuilder builder(context);
// Construct a shape function
for (shape::WithOp withOp : allWithOps) {
Value value = withOp.getOperand();
Value shape = withOp.getShape();
RankedTensorType rankedType = dyn_cast<RankedTensorType>(value.getType());
if (rankedType == nullptr)
continue;
const SmallVector<Operation *, 8> &cluster = clusters[shape];
shape::ShapeMappingValue shapeMappingValue;
auto it = dynShape2ShapeFunc.find(shape);
if (it == dynShape2ShapeFunc.end()) {
std::string name = shapeCalculationNamePrefix +
std::to_string(shapeCalculationNameIdx++);
Location loc = value.getLoc();
builder.setInsertionPointAfter(funcOp);
auto pair = createFuncFromCluster(builder, cluster, shape, name, loc);
const SmallVector<Value> &inputs = pair.second;
shape::FuncOp shapeFuncOp = pair.first;
StringAttr insertedName = symbolTable.insert(shapeFuncOp);
auto symbol = FlatSymbolRefAttr::get(context, insertedName);
shapeMappingValue.funcSymbol = symbol;
shapeMappingValue.inputs = inputs;
} else {
shapeMappingValue = it->second;
}
dynShape2ShapeFunc[shape] = shapeMappingValue;
shapeMappingAnalysis.shapeMapping.insert(
std::make_pair(value, shapeMappingValue));
}
}
struct OutlineShapeComputationPass
: public impl::OutlineShapeComputationPassBase<
OutlineShapeComputationPass> {
void runOnOperation() override;
private:
bool calOnlyUsedByWithShapesRecursively(Operation *op, Value prevOutput);
void getClusterFromValue(Value shape,
DenseMap<Value, DenseSet<Operation *>> &clusters);
DenseMap<Value, SmallVector<Operation *, 8>>
constructClustersForEachShape(const std::vector<shape::WithOp> &allWithOps,
func::FuncOp funcOp);
DenseSet<Operation *> onlyUsedByWithShapes;
};
class TensorDimOpRewriter : public OpRewritePattern<tensor::DimOp> {
using OpRewritePattern<tensor::DimOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tensor::DimOp op,
PatternRewriter &rewriter) const override {
auto shapeOf =
rewriter.create<shape::ShapeOfOp>(op.getLoc(), op.getSource());
rewriter.replaceOpWithNewOp<shape::GetExtentOp>(op, op.getType(), shapeOf,
op.getIndex());
return success();
}
};
void OutlineShapeComputationPass::runOnOperation() {
ModuleOp moduleOp = getOperation();
SymbolTable symbolTable(moduleOp);
DenseMap<Value, shape::ShapeMappingValue> dynShape2ShapeFunc;
auto &shapeMappingAnalysis = getAnalysis<shape::ShapeMappingAnalysis>();
// TODO: This is as we populate this analysis during a pass that mutates. This
// pass currently requires 1 single module being compiled.
shapeMappingAnalysis.shapeMapping.clear();
markAnalysesPreserved<shape::ShapeMappingAnalysis>();
moduleOp.walk([&](func::FuncOp funcOp) {
MLIRContext *context = funcOp.getContext();
RewritePatternSet prevPatterns(context);
prevPatterns.insert<TensorDimOpRewriter>(context);
if (failed(applyPatternsGreedily(funcOp, std::move(prevPatterns))))
return signalPassFailure();
// initialize class member `onlyUsedByWithShapes`
onlyUsedByWithShapes.clear();
funcOp.walk([&](Operation *op) {
calOnlyUsedByWithShapesRecursively(op, /*prevOutput=*/nullptr);
});
LLVM_DEBUG({
llvm::dbgs() << "onlyUsedByWithShapes table: \n";
for (auto it : onlyUsedByWithShapes)
llvm::dbgs() << *it << "\n";
});
// collect all the shape.with_shape ops.
std::vector<shape::WithOp> allWithOps;
funcOp.walk([&](shape::WithOp withOp) { allWithOps.push_back(withOp); });
DenseMap<Value, SmallVector<Operation *, 8>> clusters =
constructClustersForEachShape(allWithOps, funcOp);
constructShapeFunc(allWithOps, context, clusters, symbolTable,
dynShape2ShapeFunc, funcOp, shapeMappingAnalysis);
for (shape::WithOp withOp : allWithOps) {
Value value = withOp.getOperand();
for (Operation *user :
llvm::make_early_inc_range(withOp.getResult().getUsers())) {
if (auto valueOf = llvm::dyn_cast<shape::ValueOfOp>(user)) {
// For pattern like
// %1 = shape.with_shape %arg1, %0
// %2 = shape.value_of %1
// because shape.value doesn't care the shape, the shape.with_shape is
// redundant.
// If type of %arg1 and %2 has same type, just
// replaced %2 with %arg1.
// If type of %arg1 has different type like !shape.value_shape,
// transform into
// %2 = shape.value_of %arg1
if (valueOf.getType() == value.getType())
valueOf.replaceAllUsesWith(value);
else
valueOf.setOperand(value);
}
}
}
// Apply patterns, note this also performs DCE.
if (failed(applyPatternsGreedily(funcOp, {})))
return signalPassFailure();
});
}
DenseMap<Value, SmallVector<Operation *, 8>>
OutlineShapeComputationPass::constructClustersForEachShape(
const std::vector<shape::WithOp> &allWithOps, func::FuncOp funcOp) {
DenseMap<Value, DenseSet<Operation *>> clusters;
for (shape::WithOp withOp : allWithOps) {
Value shape = withOp.getShape();
if (clusters.count(shape) == 0)
getClusterFromValue(shape, clusters);
}
return getOrderedClusters(clusters, funcOp);
}
// The output of a cluster is the `shape`, and the inputs are the outputs of
// operations who are not in `onlyUsedByWithShapes`
void OutlineShapeComputationPass::getClusterFromValue(
Value shape, DenseMap<Value, DenseSet<Operation *>> &clusters) {
DenseSet<Operation *> cluster;
DenseSet<Operation *> visited;
std::queue<Operation *> queue;
// defOp == nullptr means shape is the argument of the func op
if (Operation *defOp = shape.getDefiningOp()) {
visited.insert(defOp);
queue.push(defOp);
}
while (!queue.empty()) {
Operation *op = queue.front();
queue.pop();
if (onlyUsedByWithShapes.contains(op)) {
cluster.insert(op);
for (Value inp : op->getOperands()) {
Operation *inpDefOp = inp.getDefiningOp();
if (nullptr != inpDefOp && visited.insert(inpDefOp).second)
queue.push(inpDefOp);
}
}
}
clusters[shape] = std::move(cluster);
}
// Returns whether `op` is a shape.with_shape, or all the users' of `op`
// eventually point to the shape operand of shape.with_shape ops
bool OutlineShapeComputationPass::calOnlyUsedByWithShapesRecursively(
Operation *op, Value prevOutput) {
if (onlyUsedByWithShapes.contains(op))
return true;
if (auto withOp = llvm::dyn_cast<shape::WithOp>(op))
return withOp.getShape() == prevOutput;
if (op->use_empty())
return false;
for (Value oup : op->getResults())
for (Operation *user : oup.getUsers())
if (!calOnlyUsedByWithShapesRecursively(user, oup))
return false;
onlyUsedByWithShapes.insert(op);
return true;
}
} // namespace