-
Notifications
You must be signed in to change notification settings - Fork 34
/
demo.py
231 lines (190 loc) · 9.4 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
# Demo script
# author: ynie
# date: April, 2020
from net_utils.utils import load_device, load_model
from net_utils.utils import CheckpointIO
from configs.config_utils import mount_external_config
import numpy as np
import torch
from torchvision import transforms
import os
from time import time
from PIL import Image
import json
import math
from configs.data_config import Relation_Config, NYU40CLASSES, NYU37_TO_PIX3D_CLS_MAPPING
rel_cfg = Relation_Config()
d_model = int(rel_cfg.d_g/4)
from models.total3d.dataloader import collate_fn
HEIGHT_PATCH = 256
WIDTH_PATCH = 256
data_transforms = transforms.Compose([
transforms.Resize((HEIGHT_PATCH, WIDTH_PATCH)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
def parse_detections(detections):
bdb2D_pos = []
size_cls = []
for det in detections:
bdb2D_pos.append(det['bbox'])
size_cls.append(NYU40CLASSES.index(det['class']))
return bdb2D_pos, size_cls
def get_g_features(bdb2D_pos):
n_objects = len(bdb2D_pos)
g_feature = [[((loc2[0] + loc2[2]) / 2. - (loc1[0] + loc1[2]) / 2.) / (loc1[2] - loc1[0]),
((loc2[1] + loc2[3]) / 2. - (loc1[1] + loc1[3]) / 2.) / (loc1[3] - loc1[1]),
math.log((loc2[2] - loc2[0]) / (loc1[2] - loc1[0])),
math.log((loc2[3] - loc2[1]) / (loc1[3] - loc1[1]))] \
for id1, loc1 in enumerate(bdb2D_pos)
for id2, loc2 in enumerate(bdb2D_pos)]
locs = [num for loc in g_feature for num in loc]
pe = torch.zeros(len(locs), d_model)
position = torch.from_numpy(np.array(locs)).unsqueeze(1).float()
div_term = torch.exp(torch.arange(0, d_model, 2).float() * -(math.log(10000.) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
return pe.view(n_objects * n_objects, rel_cfg.d_g)
def load_demo_data(demo_path, device):
img_path = os.path.join(demo_path, 'img.jpg')
assert os.path.exists(img_path)
cam_K_path = os.path.join(demo_path, 'cam_K.txt')
assert os.path.exists(cam_K_path)
detection_path = os.path.join(demo_path, 'detections.json')
assert detection_path
'''preprocess'''
image = Image.open(img_path).convert('RGB')
cam_K = np.loadtxt(cam_K_path)
with open(detection_path, 'r') as file:
detections = json.load(file)
boxes = dict()
bdb2D_pos, size_cls = parse_detections(detections)
# obtain geometric features
boxes['g_feature'] = get_g_features(bdb2D_pos)
# encode class
cls_codes = torch.zeros([len(size_cls), len(NYU40CLASSES)])
cls_codes[range(len(size_cls)), size_cls] = 1
boxes['size_cls'] = cls_codes
# get object images
patch = []
for bdb in bdb2D_pos:
img = image.crop((bdb[0], bdb[1], bdb[2], bdb[3]))
img = data_transforms(img)
patch.append(img)
boxes['patch'] = torch.stack(patch)
image = data_transforms(image)
camera = dict()
camera['K'] = cam_K
boxes['bdb2D_pos'] = np.array(bdb2D_pos)
"""assemble data"""
data = collate_fn([{'image':image, 'boxes_batch':boxes, 'camera':camera}])
image = data['image'].to(device)
K = data['camera']['K'].float().to(device)
patch = data['boxes_batch']['patch'].to(device)
size_cls = data['boxes_batch']['size_cls'].float().to(device)
g_features = data['boxes_batch']['g_feature'].float().to(device)
split = data['obj_split']
rel_pair_counts = torch.cat([torch.tensor([0]), torch.cumsum(
torch.pow(data['obj_split'][:, 1] - data['obj_split'][:, 0], 2), 0)], 0)
cls_codes = torch.zeros([size_cls.size(0), 9]).to(device)
cls_codes[range(size_cls.size(0)), [NYU37_TO_PIX3D_CLS_MAPPING[cls.item()] for cls in
torch.argmax(size_cls, dim=1)]] = 1
bdb2D_pos = data['boxes_batch']['bdb2D_pos'].float().to(device)
input_data = {'image':image, 'K':K, 'patch':patch, 'patch_for_mesh':patch, 'g_features':g_features,
'size_cls':size_cls, 'split':split, 'rel_pair_counts':rel_pair_counts,
'cls_codes':cls_codes, 'bdb2D_pos':bdb2D_pos}
return input_data
def run(cfg):
'''Begin to run network.'''
checkpoint = CheckpointIO(cfg)
'''Mount external config data'''
cfg = mount_external_config(cfg)
'''Load save path'''
cfg.log_string('Data save path: %s' % (cfg.save_path))
'''Load device'''
cfg.log_string('Loading device settings.')
device = load_device(cfg)
'''Load net'''
cfg.log_string('Loading model.')
net = load_model(cfg, device=device)
checkpoint.register_modules(net=net)
cfg.log_string(net)
'''Load existing checkpoint'''
checkpoint.parse_checkpoint()
cfg.log_string('-' * 100)
'''Load data'''
cfg.log_string('Loading data.')
data = load_demo_data(cfg.config['demo_path'], device)
'''Run demo'''
net.train(cfg.config['mode'] == 'train')
with torch.no_grad():
start = time()
est_data = net(data)
end = time()
print('Time elapsed: %s.' % (end-start))
'''write and visualize outputs'''
from net_utils.libs import get_layout_bdb_sunrgbd, get_rotation_matix_result, get_bdb_evaluation
from scipy.io import savemat
from libs.tools import write_obj
lo_bdb3D_out = get_layout_bdb_sunrgbd(cfg.bins_tensor, est_data['lo_ori_reg_result'],
torch.argmax(est_data['lo_ori_cls_result'], 1),
est_data['lo_centroid_result'],
est_data['lo_coeffs_result'])
# camera orientation for evaluation
cam_R_out = get_rotation_matix_result(cfg.bins_tensor,
torch.argmax(est_data['pitch_cls_result'], 1), est_data['pitch_reg_result'],
torch.argmax(est_data['roll_cls_result'], 1), est_data['roll_reg_result'])
# projected center
P_result = torch.stack(((data['bdb2D_pos'][:, 0] + data['bdb2D_pos'][:, 2]) / 2 -
(data['bdb2D_pos'][:, 2] - data['bdb2D_pos'][:, 0]) * est_data['offset_2D_result'][:, 0],
(data['bdb2D_pos'][:, 1] + data['bdb2D_pos'][:, 3]) / 2 -
(data['bdb2D_pos'][:, 3] - data['bdb2D_pos'][:, 1]) * est_data['offset_2D_result'][:,1]), 1)
bdb3D_out_form_cpu, bdb3D_out = get_bdb_evaluation(cfg.bins_tensor,
torch.argmax(est_data['ori_cls_result'], 1),
est_data['ori_reg_result'],
torch.argmax(est_data['centroid_cls_result'], 1),
est_data['centroid_reg_result'],
data['size_cls'], est_data['size_reg_result'], P_result,
data['K'], cam_R_out, data['split'], return_bdb=True)
# save results
nyu40class_ids = [int(evaluate_bdb['classid']) for evaluate_bdb in bdb3D_out_form_cpu]
save_path = cfg.config['demo_path'].replace('inputs', 'outputs')
if not os.path.exists(save_path):
os.makedirs(save_path)
# save layout
savemat(os.path.join(save_path, 'layout.mat'),
mdict={'layout': lo_bdb3D_out[0, :, :].cpu().numpy()})
# save bounding boxes and camera poses
interval = data['split'][0].cpu().tolist()
current_cls = nyu40class_ids[interval[0]:interval[1]]
savemat(os.path.join(save_path, 'bdb_3d.mat'),
mdict={'bdb': bdb3D_out_form_cpu[interval[0]:interval[1]], 'class_id': current_cls})
savemat(os.path.join(save_path, 'r_ex.mat'),
mdict={'cam_R': cam_R_out[0, :, :].cpu().numpy()})
# save meshes
current_faces = est_data['out_faces'][interval[0]:interval[1]]
current_coordinates = est_data['meshes'][interval[0]:interval[1]]
for obj_id, obj_cls in enumerate(current_cls):
file_path = os.path.join(save_path, '%s_%s.obj' % (obj_id, obj_cls))
mesh_obj = {'v': current_coordinates[obj_id].transpose(-1, -2).cpu().numpy(),
'f': current_faces[obj_id].cpu().numpy()}
write_obj(file_path, mesh_obj)
#########################################################################
#
# Visualization
#
#########################################################################
import scipy.io as sio
from utils.visualize import format_bbox, format_layout, format_mesh, Box
from glob import glob
pre_layout_data = sio.loadmat(os.path.join(save_path, 'layout.mat'))['layout']
pre_box_data = sio.loadmat(os.path.join(save_path, 'bdb_3d.mat'))
pre_boxes = format_bbox(pre_box_data, 'prediction')
pre_layout = format_layout(pre_layout_data)
pre_cam_R = sio.loadmat(os.path.join(save_path, 'r_ex.mat'))['cam_R']
vtk_objects, pre_boxes = format_mesh(glob(os.path.join(save_path, '*.obj')), pre_boxes)
image = np.array(Image.open(os.path.join(cfg.config['demo_path'], 'img.jpg')).convert('RGB'))
cam_K = np.loadtxt(os.path.join(cfg.config['demo_path'], 'cam_K.txt'))
scene_box = Box(image, None, cam_K, None, pre_cam_R, None, pre_layout, None, pre_boxes, 'prediction', output_mesh = vtk_objects)
scene_box.draw_projected_bdb3d('prediction', if_save=True, save_path = '%s/3dbbox.png' % (save_path))
scene_box.draw3D(if_save=True, save_path = '%s/recon.png' % (save_path))