-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmain.py
324 lines (291 loc) · 13.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
from functools import partial
from itertools import product
import re
import sys
import argparse
from utils import logger
from datasets import get_dataset
from train_eval import cross_validation_with_val_set, single_train_test
from res_gcn import ResGCN
DATA_SOCIAL = ['COLLAB', 'IMDB-BINARY', 'IMDB-MULTI']
DATA_SOCIAL += ['REDDIT-MULTI-5K', 'REDDIT-MULTI-12K', 'REDDIT-BINARY']
DATA_BIO = ['MUTAG', 'NCI1', 'PROTEINS', 'DD', 'ENZYMES', 'PTC_MR']
DATA_REDDIT = [
data for data in DATA_BIO + DATA_SOCIAL if "REDDIT" in data]
DATA_NOREDDIT = [
data for data in DATA_BIO + DATA_SOCIAL if "REDDIT" not in data]
DATA_SUBSET_STUDY = ['COLLAB', 'IMDB-BINARY', 'IMDB-MULTI',
'NCI1', 'PROTEINS', 'DD']
DATA_SUBSET_STUDY_SUP = [
d for d in DATA_SOCIAL + DATA_BIO if d not in DATA_SUBSET_STUDY]
DATA_SUBSET_FAST = ['IMDB-BINARY', 'PROTEINS', 'IMDB-MULTI', 'ENZYMES']
DATA_IMAGES = ['MNIST', 'MNIST_SUPERPIXEL', 'CIFAR10']
str2bool = lambda x: x.lower() == "true"
parser = argparse.ArgumentParser()
parser.add_argument('--exp', type=str, default="test")
parser.add_argument('--data_root', type=str, default="data")
parser.add_argument('--epochs', type=int, default=100)
parser.add_argument('--batch_size', type=int, default=128)
parser.add_argument('--lr', type=float, default=0.001)
parser.add_argument('--lr_decay_factor', type=float, default=0.5)
parser.add_argument('--lr_decay_step_size', type=int, default=500)
parser.add_argument('--epoch_select', type=str, default='test_max')
parser.add_argument('--n_layers_feat', type=int, default=1)
parser.add_argument('--n_layers_conv', type=int, default=3)
parser.add_argument('--n_layers_fc', type=int, default=2)
parser.add_argument('--hidden', type=int, default=128)
parser.add_argument('--global_pool', type=str, default="sum")
parser.add_argument('--skip_connection', type=str2bool, default=False)
parser.add_argument('--res_branch', type=str, default="BNConvReLU")
parser.add_argument('--dropout', type=float, default=0)
parser.add_argument('--edge_norm', type=str2bool, default=True)
parser.add_argument('--with_eval_mode', type=str2bool, default=True)
args = parser.parse_args()
def create_n_filter_triples(datasets, feat_strs, nets, gfn_add_ak3=False,
gfn_reall=True, reddit_odeg10=False,
dd_odeg10_ak1=False):
triples = [(d, f, n) for d, f, n in product(datasets, feat_strs, nets)]
triples_filtered = []
for dataset, feat_str, net in triples:
# Add ak3 for GFN.
if gfn_add_ak3 and 'GFN' in net:
feat_str += '+ak3'
# Remove edges for GFN.
if gfn_reall and 'GFN' in net:
feat_str += '+reall'
# Replace degree feats for REDDIT datasets (less redundancy, faster).
if reddit_odeg10 and dataset in [
'REDDIT-BINARY', 'REDDIT-MULTI-5K', 'REDDIT-MULTI-12K']:
feat_str = feat_str.replace('odeg100', 'odeg10')
# Replace degree and akx feats for dd (less redundancy, faster).
if dd_odeg10_ak1 and dataset in ['DD']:
feat_str = feat_str.replace('odeg100', 'odeg10')
feat_str = feat_str.replace('ak3', 'ak1')
triples_filtered.append((dataset, feat_str, net))
return triples_filtered
def get_model_with_default_configs(model_name,
num_feat_layers=args.n_layers_feat,
num_conv_layers=args.n_layers_conv,
num_fc_layers=args.n_layers_fc,
residual=args.skip_connection,
hidden=args.hidden):
# More default settings.
res_branch = args.res_branch
global_pool = args.global_pool
dropout = args.dropout
edge_norm = args.edge_norm
# modify default architecture when needed
if model_name.find('_') > 0:
num_conv_layers_ = re.findall('_conv(\d+)', model_name)
if len(num_conv_layers_) == 1:
num_conv_layers = int(num_conv_layers_[0])
print('[INFO] num_conv_layers set to {} as in {}'.format(
num_conv_layers, model_name))
num_fc_layers_ = re.findall('_fc(\d+)', model_name)
if len(num_fc_layers_) == 1:
num_fc_layers = int(num_fc_layers_[0])
print('[INFO] num_fc_layers set to {} as in {}'.format(
num_fc_layers, model_name))
residual_ = re.findall('_res(\d+)', model_name)
if len(residual_) == 1:
residual = bool(int(residual_[0]))
print('[INFO] residual set to {} as in {}'.format(
residual, model_name))
gating = re.findall('_gating', model_name)
if len(gating) == 1:
global_pool += "_gating"
print('[INFO] add gating to global_pool {} as in {}'.format(
global_pool, model_name))
dropout_ = re.findall('_drop([\.\d]+)', model_name)
if len(dropout_) == 1:
dropout = float(dropout_[0])
print('[INFO] dropout set to {} as in {}'.format(
dropout, model_name))
hidden_ = re.findall('_dim(\d+)', model_name)
if len(hidden_) == 1:
hidden = int(hidden_[0])
print('[INFO] hidden set to {} as in {}'.format(
hidden, model_name))
if model_name.startswith('ResGFN'):
collapse = True if 'flat' in model_name else False
def foo(dataset):
return ResGCN(dataset, hidden, num_feat_layers, num_conv_layers,
num_fc_layers, gfn=True, collapse=collapse,
residual=residual, res_branch=res_branch,
global_pool=global_pool, dropout=dropout,
edge_norm=edge_norm)
elif model_name.startswith('ResGCN'):
def foo(dataset):
return ResGCN(dataset, hidden, num_feat_layers, num_conv_layers,
num_fc_layers, gfn=False, collapse=False,
residual=residual, res_branch=res_branch,
global_pool=global_pool, dropout=dropout,
edge_norm=edge_norm)
else:
raise ValueError("Unknown model {}".format(model_name))
return foo
def run_exp_lib(dataset_feat_net_triples,
get_model=get_model_with_default_configs):
results = []
exp_nums = len(dataset_feat_net_triples)
print("-----\nTotal %d experiments in this run:" % exp_nums)
for exp_id, (dataset_name, feat_str, net) in enumerate(
dataset_feat_net_triples):
print('{}/{} - {} - {} - {}'.format(
exp_id+1, exp_nums, dataset_name, feat_str, net))
print("Here we go..")
sys.stdout.flush()
for exp_id, (dataset_name, feat_str, net) in enumerate(
dataset_feat_net_triples):
print('-----\n{}/{} - {} - {} - {}'.format(
exp_id+1, exp_nums, dataset_name, feat_str, net))
sys.stdout.flush()
dataset = get_dataset(
dataset_name, sparse=True, feat_str=feat_str, root=args.data_root)
model_func = get_model(net)
if 'MNIST' in dataset_name or 'CIFAR' in dataset_name:
train_dataset, test_dataset = dataset
train_acc, acc, duration = single_train_test(
train_dataset,
test_dataset,
model_func,
epochs=args.epochs,
batch_size=args.batch_size,
lr=args.lr,
lr_decay_factor=args.lr_decay_factor,
lr_decay_step_size=args.lr_decay_step_size,
weight_decay=0,
epoch_select=args.epoch_select,
with_eval_mode=args.with_eval_mode)
std = 0
else:
train_acc, acc, std, duration = cross_validation_with_val_set(
dataset,
model_func,
folds=10,
epochs=args.epochs,
batch_size=args.batch_size,
lr=args.lr,
lr_decay_factor=args.lr_decay_factor,
lr_decay_step_size=args.lr_decay_step_size,
weight_decay=0,
epoch_select=args.epoch_select,
with_eval_mode=args.with_eval_mode,
logger=logger)
summary1 = 'data={}, model={}, feat={}, eval={}'.format(
dataset_name, net, feat_str, args.epoch_select)
summary2 = 'train_acc={:.2f}, test_acc={:.2f} ± {:.2f}, sec={}'.format(
train_acc*100, acc*100, std*100, round(duration, 2))
results += ['{}: {}, {}'.format('fin-result', summary1, summary2)]
print('{}: {}, {}'.format('mid-result', summary1, summary2))
sys.stdout.flush()
print('-----\n{}'.format('\n'.join(results)))
sys.stdout.flush()
def run_exp_arch_res_n_layers(gfn=False, gcn=False, resnet=False):
print('[INFO] running architecture ablation on conv depth and resnet..')
# datasets = DATA_SUBSET_STUDY
# datasets = DATA_SUBSET_STUDY_SUP
datasets = DATA_BIO + DATA_SOCIAL
feat_strs = ['deg+odeg100']
cf_triples = partial(create_n_filter_triples, gfn_add_ak3=True,
reddit_odeg10=True, dd_odeg10_ak1=True)
# Test num layers for GFN
if gfn:
nets = ['ResGFN']
nets_new = ['ResGFN-flat_fc1']
for num_fc_layers in [2, 1]:
for num_conv_layers in [0, 1, 2, 3, 4]:
for net in nets:
net_new = '{}_conv{}_fc{}'.format(
net, num_conv_layers, num_fc_layers)
nets_new.append(net_new)
run_exp_lib(cf_triples(datasets, feat_strs, nets_new))
# Test num layers for GCN
if gcn:
nets = ['ResGCN']
nets_new = []
for num_conv_layers in [0, 1, 2, 3, 4]:
for net in nets:
net_new = '{}_conv{}_fc2'.format(
net, num_conv_layers)
nets_new.append(net_new)
run_exp_lib(cf_triples(datasets, feat_strs, nets_new))
# Test residual connection
if resnet:
nets = ['ResGFN', 'ResGCN']
nets_new = []
for num_conv_layers in [3]:
for residual in [0, 1]:
for net in nets:
net_new = '{}_conv{}_fc2_res{}'.format(
net, num_conv_layers, residual)
nets_new.append(net_new)
run_exp_lib(cf_triples(datasets, feat_strs, nets_new))
def run_exp_feat_study():
print('[INFO] running feature study..')
# datasets = DATA_SUBSET_STUDY
# datasets = DATA_NOREDDIT
datasets = DATA_BIO + DATA_SOCIAL
feat_strs = ['none', 'deg+odeg100', 'ak1', 'ak2', 'ak3', 'cent']
feat_strs += ['deg+odeg100+ak1', 'deg+odeg100+ak2', 'deg+odeg100+ak3']
feat_strs += ['deg+odeg100+ak3+cent']
nets = ['ResGFN', 'ResGCN']
run_exp_lib(create_n_filter_triples(datasets, feat_strs, nets,
reddit_odeg10=True,
dd_odeg10_ak1=False))
def run_exp_benchmark():
# Run GFN, GFN (light), GCN
print('[INFO] running standard benchmarks..')
datasets = DATA_BIO + DATA_SOCIAL
feat_strs = ['deg+odeg100']
nets = ['ResGFN', 'ResGFN_conv0_fc2', 'ResGCN']
run_exp_lib(create_n_filter_triples(datasets, feat_strs, nets,
gfn_add_ak3=True,
reddit_odeg10=True,
dd_odeg10_ak1=True))
def run_exp_noises():
# Run GFN, GCN
print('[INFO] running noises experiments..')
datasets = DATA_BIO + DATA_SOCIAL
# feat_strs = ['deg+odeg100+randd0.%d'%d for d in range(10)] # Randomly delete edges
# feat_strs = ['deg+odeg100+randa%f'%f for f in [0, 0.5, 1.0, 2.0, 5.0, 10.0]] # Randomly add edges
feat_strs = ['deg+odeg100+randa%f+randd%f'%(f, f) for f in [0, 0.2, 0.4, 0.6, 0.8, 1.0]] # Randomly add/delete edges
nets = ['ResGFN', 'ResGCN']
run_exp_lib(create_n_filter_triples(datasets, feat_strs, nets,
gfn_add_ak3=True,
reddit_odeg10=True,
dd_odeg10_ak1=True))
def run_exp_image(nets=['ResGCN'], feat_strs=['none'], datasets=['MNIST']):
# Test num layers for GFN
nets_new = []
for num_fc_layers in [2]:
for num_conv_layers in [3, 5, 7]:
for net in nets:
net_new = '{}_conv{}_fc{}'.format(
net, num_conv_layers, num_fc_layers)
nets_new.append(net_new)
run_exp_lib(create_n_filter_triples(datasets, feat_strs, nets_new))
def run_exp_single_test():
print('[INFO] running single test..')
run_exp_lib([('MUTAG', 'deg+odeg100+ak3+reall', 'ResGFN')])
#run_exp_lib([('IMDB-BINARY', 'none', 'ResGCN')])
if __name__ == '__main__':
if args.exp == 'test':
run_exp_single_test()
elif args.exp == 'benchmark':
run_exp_benchmark()
elif args.exp == 'noises':
run_exp_noises()
elif args.exp == 'image_gcn':
run_exp_image(nets=['ResGCN'], feat_strs=['none'])
elif args.exp == 'image_gfn':
run_exp_image(nets=['ResGFN'], feat_strs=['ak3', 'ak5', 'ak7'])
elif args.exp == 'feature_study':
run_exp_feat_study()
elif args.exp == 'arc_study_gfn':
run_exp_arch_res_n_layers(gfn=True)
elif args.exp == 'arc_study_gcn':
run_exp_arch_res_n_layers(gcn=True)
else:
raise ValueError('Unknown exp {} to run'.format(args.exp))
pass