-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathmodel.py
140 lines (118 loc) · 4.39 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import torch
import torch.nn as nn
from operations import *
from torch.autograd import Variable
# from utils import drop_path
class Cell(nn.Module):
def __init__(self, genotype, C_prev_prev, C_prev, C, reduction, reduction_prev):
super(Cell, self).__init__()
print(C_prev_prev, C_prev, C)
self.reduction = reduction
if reduction_prev is None:
self.preprocess0 = Identity()
elif reduction_prev is True:
self.preprocess0 = FactorizedReduce(C_prev_prev, C)
else:
self.preprocess0 = ReLUConvBN(C_prev_prev, C, 1, 1, 0)
self.preprocess1 = ReLUConvBN(C_prev, C, 1, 1, 0)
if reduction:
op_names, indices = zip(*genotype.reduce)
concat = genotype.reduce_concat
else:
op_names, indices = zip(*genotype.normal)
concat = genotype.normal_concat
assert len(op_names) == len(indices)
self._steps = len(op_names) // 2
self._concat = concat
self.multiplier = len(concat)
self._ops = nn.ModuleList()
for name, index in zip(op_names, indices):
stride = 2 if reduction and index < 2 else 1
if reduction_prev is None and index == 0:
op = OPS[name](C_prev_prev, C, stride, True)
else:
op = OPS[name](C, C, stride, True)
self._ops += [op]
self._indices = indices
def forward(self, s0, s1, drop_prob):
s0 = self.preprocess0(s0)
s1 = self.preprocess1(s1)
states = [s0, s1]
for i in range(self._steps):
h1 = states[self._indices[2*i]]
h2 = states[self._indices[2*i+1]]
op1 = self._ops[2*i]
op2 = self._ops[2*i+1]
h1 = op1(h1)
h2 = op2(h2)
# if self.training and drop_prob > 0.:
# if not isinstance(op1, Identity):
# h1 = drop_path(h1, drop_prob)
# if not isinstance(op2, Identity):
# h2 = drop_path(h2, drop_prob)
s = h1 + h2
states += [s]
return torch.cat([states[i] for i in self._concat], dim=1)
class AuxiliaryHeadImageNet(nn.Module):
def __init__(self, C, num_classes):
"""assuming input size 14x14"""
super(AuxiliaryHeadImageNet, self).__init__()
self.features = nn.Sequential(
nn.ReLU(inplace=True),
nn.AvgPool2d(5, stride=2, padding=0, count_include_pad=False),
nn.Conv2d(C, 128, 1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128, 768, 2, bias=False),
nn.BatchNorm2d(768),
nn.ReLU(inplace=True)
)
self.classifier = nn.Linear(768, num_classes)
def forward(self, x):
x = self.features(x)
x = self.classifier(x.view(x.size(0),-1))
return x
class NetworkImageNet(nn.Module):
def __init__(self, C, num_classes, layers, auxiliary, genotype):
super(NetworkImageNet, self).__init__()
self._layers = layers
self._auxiliary = auxiliary
self.conv0 = nn.Conv2d(3, 96, kernel_size=3, stride=2, padding=0, bias=False)
self.conv0_bn = nn.BatchNorm2d(96, eps=1e-3)
self.stem1 = Cell(genotype, 96, 96, C // 4, True, None)
self.stem2 = Cell(genotype, 96, C * self.stem1.multiplier // 4, C // 2, True, True)
C_prev_prev, C_prev, C_curr = C * self.stem1.multiplier // 4, C * self.stem2.multiplier // 2, C
self.cells = nn.ModuleList()
reduction_prev = True
for i in xrange(layers):
if i in [layers // 3, 2 * layers // 3]:
C_curr *= 2
reduction = True
else:
reduction = False
cell = Cell(genotype, C_prev_prev, C_prev, C_curr, reduction, reduction_prev)
reduction_prev = reduction
self.cells += [cell]
C_prev_prev, C_prev = C_prev, cell.multiplier * C_curr
if i == 2 * layers // 3:
C_to_auxiliary = C_prev
if auxiliary:
self.auxiliary_head = AuxiliaryHeadImageNet(C_to_auxiliary, num_classes)
self.relu = nn.ReLU(inplace=False)
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
def forward(self, input):
logits_aux = None
s0 = self.conv0(input)
s0 = self.conv0_bn(s0)
s1 = self.stem1(s0, s0, self.drop_path_prob)
s0, s1 = s1, self.stem2(s0, s1, self.drop_path_prob)
for i, cell in enumerate(self.cells):
s0, s1 = s1, cell(s0, s1, self.drop_path_prob)
if i == 2 * self._layers // 3:
if self._auxiliary and self.training:
logits_aux = self.auxiliary_head(s1)
s1 = self.relu(s1)
out = self.global_pooling(s1)
logits = self.classifier(out.view(out.size(0), -1))
return logits, logits_aux